Lecture 7: Linear Regression Using Global Warming as a Case Study

Road Map of the Statistics Part

What will be covered in this lecture?

- 1. Regression to find the trend
- 2. Uncertainty of regression analysis
- 3. Minimizing Square Loss and Gaussian Likelihood
- 4. Assumptions of Ordinary Least Squares and their validation
 - -> Auto-correlation / Effective Sample Size / Block Bootstrapping

Earth's Surface Temperature has been Increasing

How fast is the Global Mean Surface Temperature (GMST) changing with time?

Regression to Find the Trend

Find the function of predictors that fit the predicted variable the most.

$$y = F(x) + \epsilon$$

$$\begin{array}{c} 2 \\ \text{Choose a} \\ \text{functional form} \end{array} \qquad \begin{array}{c} 2 \\ \text{Define what it} \\ \text{means by fit} \end{array} \qquad \begin{array}{c} 3 \\ \text{Find that} \\ \text{"most"} \end{array}$$

1. Choose a Functional Form

The simplest is to find a linear-relationship

$$T = \alpha t + \mu$$

Linear regression vs. Non-linear regression

Find only scaling factors

Find more than scaling factors

$$y = ae^{2x}$$

$$y = ae^{bx}$$

Fitting a line is linear regression, but linear regression is more than fitting a line.

2. Defining Loss

Quantify the closeness of alignment between data and the regression line.

Squared Loss:
$$L(\alpha,\mu) = \sum_{i=1}^n (T_i - \hat{T}_i)^2$$
.

Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2$$

Variance of data relative to the regression line, also called the Mean Squared Error (MSE).

3. Optimization and find the solution

When we are fitting a line:

$$lpha = rac{\mathrm{Cov}(x,y)}{\mathrm{Var}(x)}$$

$$\mu=ar{y}-lphaar{x}$$

Ordinary Least Square (OLS) Solution

```
import statsmodels.api as sm

years_matrix = sm.add_constant(years)

model = sm.OLS(GMST, years_matrix)

results = model.fit()

GMST_hat = results.fittedvalues
```

3. Optimization and find the solution

When we are fitting a line:

$$lpha = rac{\mathrm{Cov}(x,y)}{\mathrm{Var}(x)}$$

$$\mu=ar{y}-lphaar{x}$$

Ordinary Least Square (OLS) Solution


```
import statsmodels.api as sm
years_matrix = sm.add_constant(years)
model = sm.OLS(GMST, years_matrix)
results = model.fit()
```

GMST_hat = results.fittedvalues

The three steps are the key philosophy of data science and machine learning

SOES3042/6025 Part II, Lecturer: Duo Chan

Understanding the Summary of the Ordinary Least Square Estimate

print(results.summary())

OLS Regression Results

Dep. Variable:	у	R-squared:	0.714
Model:	0LS	Adj. R-squared:	0.712
Method:	Least Squares	F-statistic:	428.7
Date:	Mon, 05 Feb 2024	<pre>Prob (F-statistic):</pre>	1.40e-48
Time:	11:34:14	Log-Likelihood:	31.252
No. Observations:	174	AIC:	-58.50
Df Residuals:	172	BIC:	-52.19
Df Model:	1		
Covariance Type:	nonrobust		

Overall significance of the entire model

	coef	std err	t	P> t	[0.025	0.975]
const x1	-0.0722 0.0064	0.015 0.000	-4.686 20.706	0.000 0.000	-0.103 0.006	-0.042 0.007
Omnibus:		4.8	337 Durbin-			0.335
Prob(Omnibu	us):	0.0	089 Jarque-	-Bera (JB):		4.856
Skew:		0.3	376 Prob(JE	3):		0.0882
Kurtosis:		2.6	579 Cond. N	lo.		50.2

Significance of individual parameters

Assumptions behind Ordinary Least Squares (OLS)

- (1) X is noise free
- (2) Errors follow Gaussian distribution
- (3) Errors are independent with each other
- (4) Errors have the same variance

Assumptions behind Ordinary Least Squares (OLS)

- (1) X is noise free
- (2) Errors follow Gaussian distribution
- (3) Errors are independent with each other
- (4) Errors have the same variance

Whether errors are independent with each other?

Auto-correlation: Testing independence of error across time

Definition	Meaning	Functions to use
$E[X_{std}X_{std}^{+\tau}]$	Measures how a variable's current value is related to its past value at a time lag of $\boldsymbol{\tau}$.	pearsonr(data1[0:- $ au$], data1[$ au$:])
$E[X_{std}Y_{std}]$	the degree to which two variables are linearly associated	pearsonr(data1, data2) or dataframe[select_columns].corr()
	$E[X_{std}X_{std}^{+ au}]$	$E[X_{std}X_{std}^{+ au}]$ Measures how a variable's current value is related to its past value at a time lag of $ au$.

Auto-correlation is the correlation with itself but with a time lag in between

Auto-correlation Function: auto-correlation as a Function of Lag

SOES3042/6025 Part II, Lecturer: Duo Chan

Effective Sample Size (ESS)

If errors have significant auto-correlation, the effective number of independent sample will be fewer than the number of time step.

This effective sample size can be estimated by:

$$\mathrm{ESS} = \frac{N}{1 + 2\sum_{k=1}^{\infty} \rho_k}$$

Plugging in estimated autocorrelation for the GMST problem, we get an ESS of 8, suggesting the dataset can be broken into 8 independent chunks of data.

SOES3042/6025 Part II, Lecturer: Duo Chan

Understanding the Effective sample size

Large auto-correlation

Understanding the Effective sample size

Block Bootstrapping: Further Accounting for Auto-correlation structures

- (0) Estimate block size using ESS
- (1) Resampling blocks of data with replacement
- (2) Calculate the target statistics on resampled data
- (3) Repeat to generate a distribution

Block bootstrapping often leads to wider uncertainty estimates.

```
ESS = ...
N_blocks = int(N / ESS)
for ct in np.arange(N_boot):
    Resample data blocks with replacement
    Calculate statistics using resampled data
    Save calculated statistics in an array
Evaluate the confidence interval of statistics
```

np.random.randint()

Road Map of the Statistics Part

Road Map of the Statistics Part

