Lecture 10:

Review & Advanced Regression Techniques

Essential to pass the course

Bonus to get higher scores

Road Map of the Statistics Part

Explore a single dataset - a crucial building block for later analysis (Problem 1)

Steps for evaluating correlations between two variables (Problem 2)

Steps for evaluating correlations between two variables (Problem 3)

Steps for linear regression using ordinary least square (Problem 4)

Steps for Model Selection (Problem 4)

Accounting for Regression Dilution: York Regression

When the error of individual data points is known

York Regression is a way to account for regression dilution.

$$P(x|\mu,\sigma)=rac{1}{\sigma\sqrt{2\pi}} \exp[-rac{(x-\mu)^2}{2\sigma^2}]$$

$$\sigma^2=\sigma_y^2+rac{lpha^2}{\sigma_x^2}\sigma_x^2-2lpha
ho\sigma_x\sigma_y$$
 Weight is a function of fitted slope

Input: x, y, σ_x , σ_y , ρ (optional)

The algorithm uses an iterative approach that converges to the solution.

Account for Outliers: Huber Regression

When the error of individual data points is unknown

We need to estimate which data points are more reliable

Generalised Regression and Machine Learning

Neural Network

Convolutional Neural Network (Image recognition; weather forecast)

Auto encoder - decoder (Dimension reduction; non-linear EOF)

Transformer (GPT)

Generalised Regression and Machine Learning

Other loss functions

Absolute Loss (L1 Loss) - LASSO regression

Kullback-Leibler (KL) Divergence - For machine learning categorical data

Poisson Loss - For count data.

Binomial Loss - For binary outcomes or proportions.

Multinomial Loss - For multi-class categorical data.

Exponential Loss - For time-to-event or survival data.

Gamma Loss - For positively skewed continuous data.

Generalised Regression and Machine Learning

Optimisation

Classic Optimisation Methods:

Gradient Descent - Iterative gradient minimisation.

Newton's Method - Uses second derivatives.

Quasi-Newton (BFGS) - Approximates second derivatives.

Conjugate Gradient - Efficient for large-scale problems.

Simplex Method - Linear programming.

Lagrange Multipliers - Constrained optimisation.

Advanced/ML Optimisation Methods:

Stochastic Gradient Descent (SGD) - Mini-batch updates.

Adam - Adaptive learning rates.

Bayesian Optimization - Probabilistic global optimisation.

Genetic Algorithms - Evolution-inspired optimisation.

Simulated Annealing - Randomised global search.