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ABSTRACT

Reconstructing past sea-surface temperatures (SSTs) from historical measurements 

containing more than 100 million ship-based observations taken by over 500,000 ships 

from more than 150 countries using a variety of methodologies creates a wide range of 

historical, scientific, and statistical challenges. The reconstruction of historical SSTs 

for studying climate change is particularly challenging because SST measurements are 

uncertain and contain systematic biases of order 0.1 C to 1 C—these systematic biases 

are in the range of the historical global warming signal of approximately 1 C. The 

biases are complicated and have generally been addressed using simplified 

corrections. In this review, I introduce a history of SST observations, review a 

statistical method developed for quantifying SST biases, and illustrate scientific 

insights obtained from adjusted SSTs. This article also documents the scientific journey 

of my Ph.D. work. As a result, I report personal stories on both successes, difficulties, 

and setbacks along the way. The statistical method for correcting SSTs (i.e., a linear-

mixed-effect intercomparison framework) depends on identifying systematic offsets 

between intercomparable groups of SST observations. Combining estimated offsets 

with physical and historical evidence has allowed for correcting discrepancies 

associated with SSTs, including the North Atlantic warming twice as fast as the North 

Pacific in the early 20th century and anomalously warm SSTs during World War II. 

Corrections also permit better hindcasting of Atlantic hurricanes. I conclude with some 

discussion on how the SST records might be further improved. Given the importance of 

SSTs for understanding historical changes in climate, I hope that this review can help 

others appreciate challenges that are present and spark some interest and ideas for 

further improvement.

Keywords: climate reconstruction, sea-surface temperature, bias correction, data 

homogenization, linear-mixed-effect model

Media Summary
To better predict what climate change will look like in the future, it is crucial to know 

how and why climate has changed in the past. One essential component of climate 

change is the ocean, for which we have more than 200 years of ship-based 

temperature measurements made at the ocean surface. However, biases in early sea-

surface temperatures have limited their usage in climate studies. These biases are 

similar in magnitude to historical warming, and they vary with measurement methods, 

instruments, protocols, and even postprocessing and data-keeping practices. The 
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question is, therefore, can we remove the complicated biases and obtain a sea-surface 

temperature estimate that is accurate enough to study past climate change?

In this article, I review recent progress aimed at correcting sea-surface temperatures 

for individual nations and data-collecting groups. I introduce a statistical framework 

that compares nearby measurements and estimates systematic offsets in temperatures 

among groups. Physical and historical evidence is then combined to understand the 

origins of significant groupwise differences detected by the statistical method. 

Correcting data leads to spatially more homogeneous warming in the early 20th 

century and removes anomalously warm sea temperatures during World War II, which 

reconciles existing model-data discrepancies and brings observations into consistency 

with current knowledge of climate forcing and variability. Beyond the ocean itself, 

adjusted sea-surface temperatures also allow atmospheric models to simulate more 

realistic historical variations in North Atlantic hurricanes, showing potential for 

improving predictions of these high-impact events. This review also demonstrates the 

importance of understanding the social context and history of how data are collected 

and postprocessed. When data and models disagree, keeping an awareness of potential 

flaws in the quality of data appears to be a necessary practice.

1. Introduction
Sea-surface temperature (SST), typically defined at ocean depth of 20–30 cm (Kennedy 

et al., 2019) is a crucial quantity for studying the Earth’s climate. Estimates of 

historical SSTs to an accuracy of 0.05 C at the global scale and 0.1 C at regional 

scales are required for a wide range of climate applications (Kent & Berry, 2008), 

which include depicting past climate change (Hartmann et al., 2013), attributing 

anthropogenic versus internal climate variability (Bindoff et al., 2013), and 

understanding changes in climate and weather events that have far-reaching societal 

impacts, such as El Niño (Yeh et al., 2009) and hurricanes Vecchi et al., 2011). 

Moreover, SSTs are often used as boundary conditions in numerical models to 

reproduce or hindcast a variety of meteorological phenomena (Gates et al., 1999).

Despite their importance for climate sciences, estimates of historical SSTs remain 

highly uncertain (P. Jones, 2016), with disagreements existing between observational 

estimates and climate-model simulations. One example of such data-model 

disagreement would be the recent warming hiatus, which refers to a slowdown in the 

increase of the observed global-mean surface temperature since the late 1990s 

(Easterling & Wehner, 2009). The hiatus was one of the most popular climate-related 
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research topics in the first half of the 2010s. At that time, state-of-art climate models 

that were used in the latest Intergovernmental Panel on Climate Change report (IPCC 

AR5, Taylor et al., 2012) simulated significantly faster warming ( ) than 

observational estimates (Fyfe et al., 2013; Medhaug et al., 2017). One possible 

explanation, as suggested by many studies, involves natural climate fluctuations that 

can uptake heat from the surface into the deep ocean (Chen & Tung, 2014; Kosaka & 

Xie, 2013) that recent trends in observed SSTs were underestimated by 0.064

C/decade from 2000 to 2014 due to biases in ship-based measurements Karl et al., 

2015). Correcting SSTs reduces the so-called “recent warming hiatus,” making the 

estimate of warming rates since the early 2000s consistent with the rapid warming 

since the late 1970s (Hausfather et al., 2017; Karl et al., 2015). In another example, 

after removing contributions from major physical modes of climate variations, 

Thompson et al. (2008) detected a sudden drop of about 0.3�C in global-mean SSTs 

immediately after World War II, which they attributed to insufficient corrections of 

instrumental SST biases.

When data and models disagree, a common practice is to assume that data reflect 

reality and to look for new theories to enrich the model and explain the data (e.g., 

using natural climate fluctuations to explain the recent warming hiatus). However, 

there is always a second and often overlooked possibility: that data contain undetected 

problems. As we shall see in detail in later sections, in addition to the recent warming 

hiatus and the artificial temperature drop at the end of World War II, major data 

problems also exist in SST estimates in terms of patterns of warming in the early 20th 

century and temperature evolution during World War II. Observed historical SSTs are 

particularly likely to contain data problems because of complicated biases associated 

with using various crude methods to collect early measurements and also because of 

simplified bias corrections employed when generating SST estimates.

1.1. A Brief History of Measuring SSTs since the 1800s.

Instrumental SSTs have been measured on ships at the ocean surface for more than 

200 years, yielding more than 130 million ship-based measurements since the 1850s 

(Freeman et al., 2017).  Such a history is longer than that of studies on anthropogenic 

climate change; the first estimate of equilibrium warming once doubling atmospheric 

CO2 was made by Svante Arrhenius in 1896 (Lapenis, 1998). The history of SST 

measurement is also much longer than that of dedicated scientific efforts to 

systematically monitor ocean temperatures, which began in the late 1970s.

p < 0.05
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Most of these early SST measurements were made not by dedicated researchers but by 

voluntary and nonscientist sailors from different countries who sailed, for example, as 

soldiers, merchants, or fishermen (Kennedy, 2014)Kent et al., 2017. These early SST 

measurements were made for a variety of purposes, including pure scientific interest, 

facilitating navigation, predicting stormy weather, and mapping a climatological 

summary of the marine environment (Kennedy, 2014). Although not made for purposes 

of monitoring climate change, ship-based in-situ observations are the only available 

source of direct measurements of past states at the ocean surface.

Historical SST values were originally recorded in ship logs and were rescued and 

digitized by a variety of projects and institutions (Wilkinson et al., 2011). Digitized data 

from various sources were later put together to construct the International 

Comprehensive Ocean-Atmosphere Data Set (ICOADS, the most comprehensive 

modern compilation of available marine meteorological measurements since the 

1700s). The digitization of ship logs and the construction of ICOADS spanned several 

decades (Freeman et al., 2017)Woodruff et al., 1998; Woodruff et al., 1987; Woodruff 

et al., 2011;Worley et al., 2005), and this initiative was accompanied by revolutions in 

computer and data-storage technologies. ICOADS3 is the latest version, and efforts 

continue to recover lost historical data sets and to include missed metadata during 

initial digitizations by reprocessing existing data banks Kent et al., 2017.

In addition to the changing purposes of measurements and record-keeping efforts, 

instruments and associated systematic SST biases during measurement have also 

experienced major changes. The first instruments to systematically measure SSTs 

across large spatial scales were buckets and thermometers. The procedure to measure 

SSTs involved hauling buckets of water from the ocean surface and measuring the 

temperature of water in buckets on ship decks. SSTs made by this method (hereafter 

bucket SSTs) are thought to dominate ICOADS before the 1940s, and the number of 

bucket SSTs gradually decreased after the mid-1970s (Figure 1). 
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During the measurement process, water temperatures in buckets will generally 

become colder due to wind-induced evaporation, as well as sensible heat loss in the 

tropics and the subtropics (Folland & Parker, 1995). In midlatitudes, bucket biases are 

still expected to be cold in winter. During summer, evaporation is suppressed in humid 

air, and the direction of sensible heat flux can be reversed as air temperatures become 

warmer than SSTs, leading to less heat loss (Folland & Parker, 1995). Sometimes, 

bucket water can be heated by the sun, especially on a calm summer afternoon 

Kennedy et al., 2019. When averaged annually and over the globe, early bucket SSTs 

Figure 1. Distinct methods used to take in-situ SSTs compiled under the 

International Comprehensive Ocean Atmosphere Data Set (ICOADS). The 

overall number of in-situ SSTs collected by different measurement methods 

(stacked bars) in individual years from 1880 to 2014. In addition to bucket (blue), 

engine-room intake (ERI, red), hull sensor (orange), and buoy (black), other 

methods (green) include radiation thermometer, reversing thermometer, and 

electronic sensors, which are, however, not thought to be representative of SSTs 

due to their limited numbers (Kent et al., 2010). Results are based on version 3.0 

of ICOADS. Method information is inferred for some unknown measurements, 

following Kennedy et al. (2011b). For example, SSTs before 1941 come from 

buckets, if not explicitly indicated otherwise, and U.S. and U.K. Naval SSTs during 

World War II are assumed to be ERI measurements (Kennedy et al., 2011b). Also 

shown are photos of some types of buckets used in SST collections, as well as 

images of moored and drifting buoys that have been widely deployed since the 

1980s.
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are estimated to be biased cold to an order of 0.4� C (Folland & Parker, 1995)

(Kennedy et al., 2011b). However, buckets of different materials and designs have been 

used under different protocols in history, which could lead to distinct biases among 

groups of bucket SSTs (Folland & Parker, 1995)Kent & Taylor, 2006). For example, a 

less-insulated canvas bucket can be colder than a more-insulated wooden bucket by 

around 0.5 C even measured under the same conditions (Folland & Parker, 1995). The 

time gap between water retrieval and measurement can also affect bucket bias.

After the emergence of engine ships in the late-19th century, a second method of 

measuring SSTs was introduced, which is a byproduct when monitoring the 

temperature of inlet water before entering and cooling ship engines. SSTs made by the 

engine-room intake (ERI) method first appear in ICOADS in the 1930s (Figure 1) and 

are mainly from U.S. ships that dominated the Atlantic and the northeast Pacific. Later, 

the ERI method was adopted by more nations and gradually became the preferred 

method because of safety concerns associated with hauling buckets on fast-moving 

ships (Kennedy, 2014). ERI SSTs typically come from a depth of 5–15 m where the 

ocean is less affected by solar heating and should consequently be colder than SSTs 

defined at 20–30 cm (Carella et al., 2018)Chan & Huybers (2020b). However, because 

of the absorption of heat from ship engines, ERI measurements are estimated to have 

warm biases of 0.1 C to 0.3 C, depending on ship design and cargo (Kennedy et al., 

2011b).

In the modern era, a variety of new methods that give more reliable SSTs have been 

used (Figure 1). Since the 1970s, an increasing number of ships are equipped with 

specialized digital sensors, known as hull sensors (Kennedy, 2014). SSTs from hull 

sensors should be free of engine heating and are therefore expected to be less biased. 

Scientists have also been deploying drifting and moored buoys since the late 1970s, 

which has become the dominant data source since the 1990s (Figure 1). Similar to hull 

sensors, buoys make contact with seawater directly and are expected to give less 

biased SST measurements, although individual buoys could be problematic due to 

instrumental drift or biofouling (Kennedy et al., 2012)Kent et al., 2017. Biofouling 

refers to the accumulation of small ocean organisms on the wet surface of instruments, 

leading to structural or functional deficiencies. Whereas drifting buoys typically 

measure at a depth of 20–30 cm, most moored buoys measure at around 1m deep 

(Kennedy, 2014). The deployment of drifting buoys substantially increased the spatial 

coverage of the observing system, especially in the southeastern Pacific and the 

Southern Ocean, which non-research ships rarely traverse. The majority of moored 

buoys are installed along the coastal U.S. as marine weather stations and over the 

∘
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tropical Pacific and the Indian Ocean to monitor El Niño evolution (Hervey, 2014). 

Combining different types of buoys, which sample at different depth, can result in 

biases due to vertical temperature gradients that often exist near the ocean surface. 

One cause of these gradients is solar heating in low-wind conditions, which can exceed 

3 C in some extreme cases (Kennedy et al., 2007). This depth effect may be damped by 

ship-induced turbulent mixing for ship-based SSTs and may appear small relative to 

bucket and ERI biases when averaged over seasons and weather conditions. However, 

recent ship-based SSTs are reported to be, on average, systematically warmer than 

collocated buoy SSTs on an order of 0.1 C Huang et al., 2017; Karl et al., 2015), which 

needs to be accounted for when combining SSTs from both sources.

In addition to in-situ observations collected at the ocean surface, SSTs from satellite 

and other remote-sensing techniques became available in the 1980s. Remote-sensing 

techniques further increase the spatial and temporal coverage of SST measurements. 

Note that satellites observe the skin temperature in the upper several millimeters of 

the ocean (Kennedy et al., 2007), and this difference in sampling depth, again, needs to 

be accounted for when homogenizing with in-situ SSTs. Additionally, SSTs retrieved 

from satellites can be biased due to changes in atmospheric optical depth associated 

with volcanic and anthropogenic aerosols and, therefore, have to be calibrated and 

corrected against in-situ measurements (T.M. Smith et al., 2008).

In addition to instruments dedicated to measuring SSTs, near-surface temperatures 

are also available from ocean profiling instruments. Historical profiles have been made 

on research vessels for more than a hundred years (Meyssignac et al., 2019). Since the 

late 1990s, scientists have been deploying Argo floats that profile temperature and 

conductivity as functions of pressure (Roemmich et al., 1999). Since 2006, Argo floats 

have been able to provide temperatures within the upper 5 meters of the ocean with 

nearly global coverage Huang et al., 2017; . Some of the most recent Argo floats can 

provide temperatures at 0.1-meter resolution in the upper 200 meters of the ocean. 

Currently, there are approximately 4,000 Argo floats providing nearly global 

information on near-surface temperatures at a frequency of once every ten days.

1.2. Insufficient Metadata and Simplified Corrections.

The shift from measuring SSTs from buckets to ERI to buoys is, therefore, 

accompanied by systematic biases varying on the order of 0.5 C. Such a variation in 

bias has a similar magnitude to the less-than-1 C global warming that is thought to 

have happened in the 20th century. On account of the irreplaceable nature of these 

early SST measurements, adjusting biases becomes crucial for quantifying and 

∘
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interpreting historical climate change. Such a problem, however, is difficult because 

biases associated with SSTs coming from the same method can be distinct due to 

different instrumental designs (e.g., different bucket materials) and measurement 

protocols used by various subsets of ships, which will interact with the uneven 

sampling to create regionally varying biases.

Although biases are complicated, lack of metadata by which to make specific 

corrections has necessitated simplifying assumptions regarding the spatial and 

temporal structure of SST biases, which inevitably lead to insufficient corrections and 

SST estimates having higher uncertainty than land surface temperatures (P. Jones, 

2016). SST products from the U.K. Met Office, for example, assumed that a transition 

from early wooden buckets to less-insulated canvas buckets happened with the 

percentage of canvas buckets increasing linearly, from 35% in 1880 to 100% in 1920 

over the entire ocean (Folland & Parker, 1995)Kennedy et al., 2019(Kennedy et al., 

2011b). In other words, all bucket measurements in the same year are assumed to be 

biased in the same way, as if they were measured by the same person using the same 

bucket. In other SST estimates, corrections do not distinguish between measurement 

methods. Rather, biases for SSTs from all methods are represented using a large-scale 

fixed pattern, with the amplitude of the pattern estimated by comparing SSTs with 

other temperature estimates, for example, nighttime marine air temperatures (Huang 

et al., 2015; Huang et al., 2017;  or coastal station-based air temperatures (Cowtan et 

al., 2018).

In addition to biases introduced during measurement, problems may also occur in the 

record-keeping and data-processing stage, as information is transferred over time and 

across technologies. One example is inaccurate metadata that leads to ERI SSTs being 

misclassified as coming from buckets (Carella et al., 2018)(Kennedy et al., 2011b). 

Other postmeasurement problems may also exist but have not yet been quantified 

systematically.

2. Toward Refined Corrections for Individual Nations and Groups of 
Data
During my Ph.D. study, I aimed to refine SST corrections by resolving the regional 

biases that arise from different measurement and postprocessing characteristics due 

to distinct physical and historical reasons. Because ships from the same nation and 

data-collecting group would have used similar instruments, followed similar protocols, 

and experienced similar postprocessing practices, I corrected biases for individual 

nations and data-collecting groups, assuming data within the same group have similar 
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bias characteristics. Specifically, nation information is mainly identified using ICOADS 

country code (Freeman et al., 2017) and metadata from the World Meteorology 

Organization No. 47 publication (Kent et al., 2007). Collecting groups are assigned 

using ICOADS deck number, which is the primary field to track ICOADS data collection 

and postprocessing (Freeman et al., 2017). Because available metadata is insufficient 

for physically constraining biases in individual groups, I turned the research question 

into a big-data problem and developed a statistical method to estimate corrections 

required for individual groups.

Ship-based SSTs contain information of both physical SST variations and biases. 

Because nearby measurements tend to have similar physical SST variations, examining 

differences between nearby SSTs allows for focusing on data heterogeneity associated 

with distinct biases. SST measurements were, therefore, first paired if they came from 

different groups and were within 300 km and two days of one another. These scales 

were chosen to keep expected physical variability with biases on the order of tenths of 

a degree Celsius. The results are not qualitatively sensitive to scales used in pairing 

SSTs (Chan & Huybers, 2019). To prevent error covariance between pairs, each 

measurement was used only once, with an algorithm prioritizing measurements closest 

in space. Specifically, the method rank-orders all potential pairs within a given month 

according to distance and selects the closest pair. The next closest pair is selected 

after removing previously selected measurements. The process repeats until all paired 

measurements are selected (Chan & Huybers, 2019).

Because measurements in a pair are not perfectly collocated in space and time, we 

first removed expected physical differences arising from displacements in 

geographical locations, seasonality, and day-night differences (Chan & Huybers, 2019). 

For example, SSTs closer to the Equator or during daytime are expected to be warmer. 

Expected differences were estimated from the 1982–2014 climatology of high-

resolution satellite-based retrievals (T.M. Smith et al., 2008). Remaining differences in 

reported SSTs  were represented using a linear-mixed-effect (LME) model, 

where  is represented as a fixed-effect term describing offsets between groups ( ) 

and random effects describing regional ( ) and temporal ( ) variations. We constrain 

 such that the average offset of all compared measurements is zero. , , and  are 

design matrices that specify, respectively, common pairs of groups, years, and regions. 

See Figure 2 for an element-wise illustration of the LME model. Such a model is 

similar to an ANOVA approach. It makes use of random effects to give more 

(δT)

(1)δT = Xα+ Z β +r r Z β +y y ϵ,
δT α

βr βy

α X Zr Zy
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conservative estimates. As the number of pairs available for constraining a random 

effect decreases, the estimate is relaxed toward zero such that estimates of regional 

and yearly variations in groupwise offsets are robust against noise (Chan & Huybers, 

2019). The model is flexible in terms of controlling for specific effects and is easily 

extendable to account for variations in offsets associated with seasonality and day-

night differences.

In practice, to reduce computational cost, SST differences are aggregated according to 

combinations of pairs of groups, regions, and years before estimating offsets (Chan & 

Huybers, 2019). Error estimates, , are budgeted to account for errors from different 

sources and heteroscedasticity associated with distinct group size (Chan & Huybers, 

2019). See Figure 3a for an example of uneven numbers of pairs between different 

combinations of groups. The error of each aggregated pair  is assumed to follow 

, where

Figure 2. An element-wise illustration of the LME model in Eq. 2.1. Also 

shown is the dimensionality of matrices and vectors (red), where p, g, and r are, 

respectively, numbers of pairs, groups, and regions. X, Zr, and Zy are design 

matrices whose entries are one, zero, or minus one. Regional effects (βr) are 

estimated for individual groups. These regional effects are assigned as random 

effects and are assumed to follow a Gaussian distribution such that each βrij ∼ 

N(0, σr
2
). Yearly effects, Zyβy, are also estimated for individual groups and have a 

similar structure to Zrβr. Higher-order interactions that involve group, year, and 

regions are not accounted for in this model to limit the number of free parameters.

ϵ

(ϵ )k
N(0, )σ̄k

2
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  denotes the contribution of random observational errors, where  is the number 

of pairs in the  aggregate. Random observational error is denoted by  and is 

estimated to be 0.86 0.18 C (2 SD, (Chan et al., 2019) for individual bucket SSTs. 

Contributions of partially correlated observational errors are denoted by , with  

estimated to be 0.38 0.14 C (Chan et al., 2019). One possible source of  is 

systematic errors associated with individual ships. Because ship information is not 

always available in ICOADS,  is used to approximate effective numbers of ships 

within the  aggregate, with  estimated to be 0.57 (Chan et al., 2019). Finally,  

denotes uncertainties associated with physical SST variations for the  out of  pairs. 

The estimation of  accounts for interannual variance and covariance of physical SSTs 

as a function of location, month, and displacement, with more details documented in 

section 5.a.1 of (Chan & Huybers, 2019). The robustness of offset estimates to a 

variety of model formulations and assumptions was explored in section 5.b of (Chan & 

Huybers, 2019).

In the following sections, I will show that the LME method detects significant offsets 

among groups classified by both nation and deck number. Accounting for these 

systematic groupwise offsets improves the quality of historical SST estimates at 

regional and sub-basin scales, resolves several existing data-model discrepancies, and 

brings in new opportunities for understanding extreme weather events and climate 

variations. Beyond the nation-and-deck level, the model in Equation 1 can be extended 

to resolve offsets associated with individual ships for more refined SST corrections. 

However, metadata of ship information and the algorithm used to fit the LME model 

need to be improved before estimating ship-level offsets. These steps will be carried 

out in future works, and associated plans will be discussed in section 7.1.

(2)=σ̄k
2 +nk

2σo
2

+nk
x

2σs
2

.
nk
2

σ (l)∑ c
2
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2

nk
kth σo

2
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Figure 3. Schematics of an LME intercomparison. (a) Numbers of SST pairs 

between nation-deck groups (in the unit of one thousand pairs) in the analysis 

that intercompares SSTs thought to come from buckets. The comparison happens 

not only between different nations (left) but also between distinct decks from the 

same nation (e.g., right; zooming in the top-right box in the left and showing the 

comparison between German decks). The number of pairs can be very different 

across combinations of groups, with ‘- -’ denoting that no pairs are found between 

corresponding groups. Nation abbreviations are for Germany (DE), France (FR), 

Great Britain (GB), Japan (JP), the Netherlands (NL), Russia (RU), the United States 

(US), and unknown (- -). Nations that contribute to fewer than 500,000 are labeled 

as “other nations” (OT) for this visualization but are distinguished in the LME 

analysis. Similarly, Germany decks that contribute to fewer than 50,000 pairs are 

shown as “OT DE decks.” (b) The spatial distribution of paired measurements 

follows major ship tracks.
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3. Offsets Among Bucket Groups and More Uniform Early-
Twentieth-Century Warming
When applied to measurements thought to come from buckets, the LME analysis 

intercompares 17.8 million pairs coming from 162 groups from 1850 to 2014 (Figure 

3). 1 The LME methodology detects significant ( ) offsets between major 

collecting nations and ships sailing for different purposes (Chan & Huybers, 2019). 

Around 15% of groups remain highly significant after controlling for family-wise error 

rates using a Bonferroni correction (Chan et al., 2019). A file listing individual offsets 

and associated uncertainty estimates can be found in the supplement to this paper. The 

identification of significant differences among nation-and-deck groups indicates that 

we can resolve region- and time-varying SST biases arising from groupwise offsets and 

varying sampling coverage of individual groups. We, therefore, can perform more 

detailed corrections that have not yet been accounted for in previous studies (Cowtan 

et al., 2018)Huang et al., 2017; (Kennedy et al., 2011b).

Removing these statistically constrained offsets provides refined SST corrections at 

regional scales. Central estimates of adjusted SSTs show higher interannual 

correlations (Pearson’s r) with nearby air temperatures from coastal land stations. For 

example, the correlation in the early 20th century increases from 0.67 to 0.85 after 

groupwise bucket adjustments over coastal East Asia (Chan et al., 2019). Station-based 

air temperatures are independently measured using more homogeneous instruments 

and are expected to contain fewer spatially and temporally varying systematic biases 

(P. Jones, 2016). Moreover, previous corrections may have missed errors associated 

with groupwise offsets and, therefore, underestimated SST uncertainties at regional 

scales. Accounting for uncertainties of groupwise offsets increases the standard error 

of trend estimates to more than three times at basin scales, which, despite being 

higher, is a more comprehensive description of our current knowledge of uncertainties.

More importantly, accounting for groupwise bucket SST offsets reconciles a long-

standing data-model discrepancy regarding the spatial heterogeneity of the early-20th-

century warming. Before groupwise bucket adjustments, whereas the North Pacific 

warmed by around 0.3 C, the North Atlantic warming exceeded 0.8 C (Figure 4, 

Hegerl et al., 2018; ). Such a big difference in warming rate, however, cannot be 

reproduced by any of the IPCC AR5 models given current knowledge of external 

forcing and internal climate variability.

p < 0.05
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The magnitude of adjustments from individual groups depends both on the magnitudes 

of offsets and on the spatial and temporal coverage of distinct groups. In the early 20th 

century, one group that determines basin-scale SST estimates is a major subset of 

Japanese measurements compiled under the Kobe collection, which dominated the 

North Pacific before World War II (Uwai & Komura, 1992). Interestingly, Japanese 

Kobe SSTs, compared with nearby measurements from other nations, show a drop of 

around 0.35 0.07 C (2 SD) in the 1930s (Chan et al., 2019). Such a drop could lead to 

a significant underestimation of the early-twentieth-century warming in the Pacific. It 

is, therefore, crucial to understand why Japanese Kobe SSTs experienced this drop. Is 

it because Japan used a new type of bucket in the 30s or did something change in the 

postprocessing of Japanese data? To disentangle this mystery, I combined historical 

approaches and physical methods.

Figure 4. Basin-scale SSTs in the early twentieth century (Chan et al., 

2019). (a) Without groupwise corrections, the annual-mean SST in the North 

Atlantic (red, 20 N poleward) warms more than twice as fast as that in the North 

Pacific (blue, 20 N poleward). Shown SSTs are based on ICOADS3.0 bucket 

measurements with only bulk bucket corrections that do not distinguish groupwise 

offsets, following Kennedy et al. (2011b). SSTs are shown as anomalies relative to 

the 1920–1929 average of each basin. (b) As (a) but after adjusting for groupwise 

offsets in bucket SSTs. Uncertainties (2 SD, shadings) are for annual average SSTs 

in each basin and are from a 1000-member ensemble of random adjustments that 

perturb groupwise offsets using their error estimates from the LME analysis in 

keeping with covariance and spatial structures.

∘

∘
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Retrospectively, figuring out the cause is like detective work: it requires effort, 

persistence, and some good luck. My first hypothesis was that Japanese sailors 

measured SSTs on larger ships that have higher decks. Japanese ships could have 

increased size as circumstances deviated from the 1922 Washington Naval Treaty that 

limited ship displacement, and as World War II approached, the Imperial Japanese 

Navy required large ships for longer voyages across the Pacific. When taking bucket 

measurements on higher decks, it generally takes longer to haul buckets, and SSTs 

tend to be collected in stronger winds, leading to colder biases. To test this hypothesis, 

I first went through individual ships in the Imperial Japanese Navy and mapped out the 

evolution of the average displacement of Japanese naval ships since the 1920s. The 

initial result was promising: Japanese ships increased in displacement at a rate that 

was approximately 40% faster than the U.S. and U.K. ships in the 1930s.2

Despite the confirmation of a rapid increase in the displacement of Japanese naval 

ships, follow-up analyses served to disprove the initial hypothesis, with two pieces of 

evidence. First, I used a thermal model of a bucket (Folland & Parker, 1995) to 

simulate the influence of higher ship decks on bucket bias by increasing the hauling 

time and the ambient wind. The bucket model indicates that water temperatures will 

be further biased cold by less than 0.1 C, a magnitude that is insufficient to explain the 

0.35 0.07 C drop seen in Japanese SSTs. Second, most of these large Japanese naval 

ships sank during battles with the U.S. Navy, and the replacement ships were small in 

size, yet the cold offsets remain in Japanese Kobe SSTs until the 1960s. The failure of 

my initial hypothesis reflects the difficulty of determining historical fact when faced 

with many possibilities. Fortunately, I discussed an initial manuscript with 

Dr. Elizabeth Kent, an expert from the U.K. National Oceanography Center who has 

been working on ICOADS for more than 30 years. She pointed me to an online library 

that documents digitization practices of many ICOADS decks. I was not aware of these 

documents before, and her deep expertise nudged me in the right direction. It turns 

out that SSTs from the Japanese Kobe collection were digitized during the recovery of 

logbooks and international marine data (RECLAIM) project (Wilkinson et al., 2011) 

with the data set divided into three subsets. The U.S. Air Force was in charge of the 

two parts that span from the 1930s to the early 1960s. During digitization, staff 

truncated Japanese temperatures and floored values to whole degrees Celsius (Figure 

5), leading to the cold offsets that were prevalent in Japanese SSTs since the 1930s. 

Because SST measurements in ICOADS have a precision of 0.1 C, the expected cold 

offset due to truncation is -0.45 C when assuming that the 10th of degree digit is 

uniformly distributed on the values from zero to nine. The detected smaller magnitude 

∘
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of -0.35 0.07 C could reflect the presence of additional offsets and biases between 

decks.

Accounting for truncation errors in Japanese data, together with removing offsets in 

other groups, reveals a more homogeneous early-20th-century warming (Figure 4b). 

The difference in warming rates between the North Atlantic and the North Pacific 

decreases from 0.54 C to 0.10 0.07 C (2 SD) and becomes consistent with 

simulations from IPCC models (Chan et al., 2019). With quantification from the 

statistical method and confirmation from historical documents, we now understand 

that the long-standing warming discrepancy is not physical but a result of data 

problems as simple as truncation errors. What has happened is more consistent with 

physics-based expectations of uniform warming associated with anthropogenic 

activities (Chan et al., 2019).

± ∘

Figure 5. Image of a U.S. Air Force Weather Service document detailing 

how data from Japanese Kobe Collection deck 118 were digitized 

(Wilkinson et al., 2011). On the right-upper corner, it indicates that when both 

SSTs and marine air temperatures from this group were digitized, the data was 

floored to whole degrees Celsius, with all decimals dropped 

(https://icoads.noaa.gov/reclaim/pdf/dck118.pdf).

∘ ± ∘
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4. Tracing the Origin of Bucket Offsets Using Physical Evidence
The reconciliation of discrepancies in the early-20th-century warming demonstrates 

the power of the LME method. It is also a good example of combining statistical 

methodologies and historical evidence to make convincing inferences and 

interpretations. However, despite the cause of the drop in Japanese Kobe SSTs being 

explained by limited historical metadata, the origin of offsets remains unclear for other 

groups. Due to limited metadata, the problem is approached by using features of the 

data. Specifically, we used a physical quantity (i.e., the diurnal cycle of SSTs) to 

explore the origin of groupwise offsets Chan & Huybers (2020b).

The diurnal cycle is variation among individual hours in a day, which can be easily 

estimated for each group independent of the LME methodology. Diurnal cycles are 

used because differences in diurnal cycles may reflect differences in measurement 

characteristics, which may have implications for daily mean SSTs through physical 

processes. For example, water in buckets is subject to heat loss from the wind but is 

heated additionally by the sun during the daytime. As a result, if a bucket stays longer 

on the ship’s deck before temperature is measured, it tends to have a higher day-night 

SST difference and overall a colder daily mean SST bias. Interestingly, when the 

amplitude of diurnal cycles and groupwise SST offsets are plotted against one another, 

the two quantities scale negatively for data in the 1980s and 1990s (Figure 6b; Chan & 

Huybers (2020b)), which strongly indicates the physicality of groupwise offsets 

detected by the LME methodology.

However, varying time on the ship’s deck is not the only reason negative scalings 

emerge. To explore other possible origins, I extended the classic thermal bucket model 

(Folland & Parker, 1995) to further resolve bucket biases at individual local hours and 

simulate diurnal cycles of bucket water temperatures. Model simulations show that a 

negative scaling between diurnal amplitude and daily mean biases can emerge not 

only from varying time on deck but also from the type of bucket insulation or 

misclassification of ERI measurements Chan & Huybers (2020b). The latter arises 

because ERI measurements are biased warm by heat from ship engines and the ERI 

method samples at a depth of 5–15 m, which is less affected by diurnal variations in 

radiation from the sun (Carella et al., 2018). Contribution from each of these origins, 

however, cannot be determined from one single slope because expected slopes 

associated with individual origins can vary with other unknown factors, including wind 

and solar exposure.
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To further trace the origin, we turned to the historical evolution of observed amplitude–

offset relationships, which reveals that negative scalings first emerge in the 1930s 

(Figure 6c; Chan & Huybers (2020b)). Data before 1930, however, have a smaller 

range in both amplitudes and offsets and show no significant scalings (Figure 6a). 

Interestingly, the 1930s is also the advent of ERI measurements in ICOADS. Moreover, 

groups having the warmest offsets also have amplitudes of diurnal cycles that are 

smaller than physical SSTs at a depth of 20–30 cm, which is consistent with 

characteristics of ERI measurements. In other words, the misclassification of ERI 

measurements, as from buckets, provides the simplest explanation and is also most 

consistent with the history of changing data characteristics.
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Figure 6. Groupwise SST offsets and diurnal amplitudes for groups 

thought to contain bucket SSTs (Chan & Huybers, 2020b). Shown results 

are over the tropics (20 S-20 N) and are for 20-year periods: (a) 1910–1929 and 

(b) 1980–1999. Groups (markers) are assigned according to nation and deck 

number. Diurnal amplitude is quantified as the amplitude of a once-per-day 

sinusoid using least-squares fitting. LME analyses shown here include ERI SSTs as 

a single group such that groupwise bucket offsets are evaluated against ERI 

measurements (details in Chan & Huybers, 2020b). Slopes between diurnal 

amplitudes and groupwise offsets (red lines) are based only on bucket groups and 

are estimated using York regressions (York et al., 2004). In an update to Chan and 

Huybers (2020b), the uncertainty of regression slopes is estimated using a 

stratified bootstrapping technique that resamples the entire history of individual 

groups with replacement (see Appendix for more details). In panel (b), note that 

the regression intersects the offset and diurnal amplitude of ERI measurements 

(double circles), indicating that bucket groups on the warm end of the slope (such 

as Russian groups shown in magenta markers) could contain misclassified ERI 

measurements. Also note that numerous groups show a diurnal amplitude that is 

similar to or lower than that of drifter SSTs (vertical black lines), which is 

consistent with the deep sampling depth of the ERI method. (c) Evolution of the 

amplitude–offset relationship, which is based on an analysis that uses a 20-year 

window and slides annually from 1880–1899 to 1990–2009. Results are shown on 

the center year of each 20-year analysis. Whereas highly uncertain slopes are 

found before the 1930s (estimates of the 2.5% quantile can be as negative as -56

C/ C before the 1910s), significant negative slopes are found afterward. Shown 

are median values (red curve), interquartile CI (dark shading), and 95% CI (light 

shading).

∘ ∘

∘
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Analyzing diurnal cycles reveals that the record-keeping problem of incorrect 

metadata that mixes up bucket and ERI measurements is prevalent in data thought to 

come from buckets after the 1930s Chan & Huybers (2020b). Moreover, examining the 

decimal distributions of individual groups indicates that in the whole ICOADS deck, 

truncation is only seen in the Japanese Kobe collection. Remaining offsets, including 

those before the 1930s, could still arise from differences in physical processes, 

although, without introducing evidence from further dimensions, the trade-off among 

different physical factors makes it hard to attribute offsets to individual processes.

5. Beyond Bucket-Only SSTs—World War II Warm Anomaly
The LME methodology detects significant groupwise offsets that arose from both 

physical processes during data collection and record-keeping problems, including 

truncation and misrecorded metadata. This method can be easily extended beyond 

bucket SSTs and provides refined internal homogenization for measurements coming 

from various instruments. When applied to all ship-based SSTs in ICOADS, the LME 

method resolves another major data-model discrepancy involving excess warming 

during World War II Chan & Huybers, 2020a.

Recent SST estimates feature warmer global-mean SSTs during World War II that well 

exceed climate-model reproductions (Figure 7a, b). Such warm anomalies are at the 

end of the early-20th-century warming and the beginning of the mid-20th-century 

hiatus and, therefore, have implications for quantifying decadal climate variations 

(Hansen et al., 2010; Morice et al., 2012; Vose et al., 2012), constraining uncertain 

aerosol forcing (Stevens, 2015), and attributing external anthropogenic forcing and 

internal climate variability in driving past climate change (Bindoff et al., 2013; Hegerl 

et al., 2018; G. S. Jones et al., 2013; Maher et al., 2014). Moreover, the World War II 

warm anomaly is the largest remaining data-model discrepancy in the global-mean 

surface temperature, given current knowledge of forcing and internal variability 

(Folland et al., 2018).
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Such an observed warm anomaly could indicate that current models missed important 

Figure 7. World War II SST anomalies in observational estimates and 

model simulations (Chan & Huybers, 2020a). Most recent SST estimates 

from (a) the U.S National Oceanic and Atmospheric Administration (ERSST5, 

green) and (b) U.K. Met Office (HadSST4, blue) show warm anomalies in global-

mean SSTs that exceed 0.2 C during World War II. The axes for (c) and (d) are as 

in (a), but (c) shows raw ship-based SSTs in ICOADS (black) and (d) shows 

daytime ship-based SSTs after groupwise adjustments (red). Shown time series 

are global-averaged SST anomalies relative to the 20-year average over 1931–

1940 and 1946–1955, where the global average is taken over grid boxes 

containing major ship tracks in the early and mid-20th century. Uncertainties are 

95% CI (blue and red shading) from ensemble corrections of corresponding 

estimates. Also shown is an ensemble of 94 historical all-forcing simulations from 

39 IPCC models (light gray curves in (c); Taylor et al., 2012). In (e), the World War 

II warm anomaly in groupwise adjusted daytime SSTs (red) becomes consistent 

with the range of internal variations estimated from IPCC models (gray 

distribution). The World War II anomaly is quantified as the difference between 

averages over 1941–1945 and over the surrounding 10 years (1936–1940 and 

1946–1950).

∘



Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

23

physical processes. The anomaly could also arise from a 58% drop in the amount of 

data collected during 1942–1945 (Figure 1). Another plausible explanation involves the 

warm anomalies reflecting incomplete corrections of SST biases. These biases have 

been hypothesized to arise from a rapid increase in the number of warm-biased ERI 

measurements during the war Thompson et al. (2008). However, tracing the origin of 

biases to specific sets of SST measurements and estimating the amount of required 

adjustments has not previously been possible. Existing corrections are limited by not 

being able to resolve offsets between groups and also due to the fact that more than 

80% of wartime measurements have missing method information in raw ICOADS.

The LME method is, however, suitable in this situation of missing metadata because it 

allows for groupwise quantification of data heterogeneity without the need for 

specifying method information (although methods can be inferred from offsets and 

cross-checked using diurnal amplitudes, e.g., as in Figure 6b). In a recent work Chan 

& Huybers, 2020a, we extended the estimation of groupwise offsets to all ship-based 

SST measurements in ICOADS, and the LME model quantifies that SSTs from some 

U.S. and U.K. naval ships that dominated data collections in World War II are, 

respectively, around 0.45 C and 0.25 C warmer than other groups before and after the 

war. These large and fast naval ships were likely to take ERI measurements (Kennedy 

et al., 2011b). Moreover, when further extended to resolve diurnal differences, the 

LME model detects an increase in nighttime measurements of around 0.3 C for many 

wartime non-ERI measurements Chan & Huybers, 2020a. Such an increase is 

consistent with warm biases arising from measuring nighttime bucket SSTs inside 

ships to avoid detection, a wartime practice documented for the U.K. Navy (Folland et 

al., 1984).

The effect of groupwise offsets and nighttime bucket biases contributes to, 

respectively, 0.26 C (95% CI 0.15 C–0.38 C) and 0.05 C (0.02 C–0.08 C) warm 

anomalies in raw ICOADS Chan & Huybers, 2020a. Adjustments bring the World War II 

warm anomaly from 0.41 C in raw ICOADS to 0.09 C (-0.01 C to 0.18 C), which 

becomes consistent with the 0.10 C range (95% CI) of internal variability in IPCC 

models (Figure 7b, c; Chan & Huybers, 2020a). Groupwise adjustments based on the 

LME methodology lead to more homogeneous spatial and temporal variations in SSTs 

and reconcile the largest remaining data-model discrepancy in global-mean surface 

temperatures.

Fixing problems in the WWII warm anomaly confirms the hypothesis of data biases, as 

suggested by Thompson et al. (2008). This piece of work also provides us with a lesson 

∘ ∘
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that historical data may contain not only physical but also social aspects. When 

interpreting historical data, especially in the context of comparing with model 

simulations, it is often implicitly assumed that data reflect the physical, or broadly, the 

scientific dimension. This assumption could be valid when a small amount of data is 

calibrated carefully for a specific scientific purpose. But for massive data sets that pool 

information from heterogeneous sources and take generations to construct, it is crucial 

to keep an awareness of the social dimension and the people involved in data collection 

and processing, especially over periods having dramatic social changes.

6. Beyond SSTs—Hindcasting of North Atlantic Hurricanes 
Adjustments of groupwise offsets have been shown to improve historical SST estimates 

and reconcile major data-model discrepancies in surface temperature evolution. On 

account of the broad climatic applications of SSTs, the implication of improved SST 

corrections, however, is not limited to simple year-to-year variations or linear trends. 

Beyond surface temperatures, improvements associated with groupwise SST 

adjustments could also advance other fields in atmospheric and ocean sciences.

One example is the hindcasting of North Atlantic hurricane activities. Decadal 

variations in the frequency of North Atlantic hurricanes are known to depend on 

patterns of tropical SSTs (Vecchi, Msadek, et al., 2013; Vecchi et al., 2008). Compared 

with observational reconstructions of Atlantic hurricane counts, dynamical climate 

models prescribed with historical SSTs as boundary conditions,3 however, reproduce 

too few hurricanes in the late-nineteenth century and too many in the mid-twentieth 

century ( , Figure 8a, Chan et al., 2020). The inability for models to skillfully 

reproduce a long-term evolution of hurricane counts that are statistically consistent 

with observational estimates erodes the credibility of future projections based on these 

models (Vecchi et al., 2019). Possible causes for this low reproducibility include 

inaccurate hurricane reconstructions (Vecchi & Knutson, 2008) and model deficiency 

(Zhao et al., 2009). In addition, biases in SSTs may also undermine simulations of 

hurricane genesis.

p < 0.05
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The SST pattern that is thought to affect North Atlantic hurricane frequency is the 

difference between the subtropical North Atlantic and the whole tropical ocean. This 

SST difference is also known as ‘relative SST’ (RSST) and is thought to influence 

hurricane genesis through affecting convective activities and potential energy (Vecchi, 

Fueglistaler, et al., 2013; Vecchi et al., 2011). Groupwise bucket SST corrections 

increase RSST in the late-nineteenth century and decrease RSST in the mid-twentieth 

century. In a recent work in which I collaborated with colleagues from Princeton 

Figure 8. 15-year running-averaged North Atlantic hurricane counts in 

observational reconstructions and model simulations (Chan et al., 2020). 

(a) Simulations (blue, average of a five-member ensemble) using SST estimates 

without groupwise bucket corrections give significantly ( ) lower hurricane 

counts than observational estimates (black) in the late 19th century and higher 

counts in the mid-20th century. (b) Simulated (red, average of a five-member 

ensemble) and observed (black) hurricane counts become consistent using SSTs 

that include groupwise bucket SST corrections. Shown curves are 15-year running-

averaged rather than raw integer counts because we are interested in the decadal 

variability of North Atlantic hurricane frequency. Uncertainties (95% CI) account 

for atmospheric internal variability and errors in hurricane adjustments (gray 

shading), atmospheric internal variability (blue shading), and atmospheric internal 

variability and errors in uncertain groupwise SST corrections (red shading). 

Distinct types of errors are assumed to be independent of one another. For 

estimates containing errors from two sources (i.e., black and red lines), shown 

uncertainties are summations of squared errors from both sources. A detailed 

description of the error model is in the method section of Chan et al. (2020). Note 

that atmospheric internal variability arises from perturbations to initial conditions, 

and that variability in observations is not expected to be reproduced by models 

because of imperfect initial conditions. It is, therefore, necessary to consider 

atmospheric internal variability as random error in both observation and 

simulation.

p < 0.05
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University Chan et al., 2020, we incorporated groupwise bucket corrections to 

previous SST estimates and found that simulated hurricane counts also show increases 

in the late-nineteenth century and decreases in the mid-twentieth century, consistent 

with expectations from adjusting RSST. More importantly, simulated hurricane counts 

become statistically consistent with independently reconstructed observational 

estimates of hurricane counts after accounting for groupwise SST offsets (Figure 8b, 

Chan et al., 2020).

Showing that SST biases are the dominant limiting factor for models to recover 

historical Atlantic hurricane counts is exciting news for both the SST and hurricane 

communities. The diminishing data-model discrepancy in hurricane variability provides 

dynamical evidence to buttress the improved quality of SSTs after groupwise 

corrections. On the other hand, the more stable relationship between observed and 

simulated hurricane activity increases the credibility of dynamical models in making 

accurate predictions of future changes in hurricane activities.

7. What Is Next?
Correcting national and groupwise offsets improves historical SSTs and reconciles a 

number of data-model mismatches. Despite these significant improvements, estimates 

of historical SSTs are still far from perfect, and there is much scope for further 

improvements. In addition to recovering lost data sets and missed metadata (as 

suggested in, e.g., Kent et al., 2017), opportunities exist to develop new techniques 

and further analyze existing data sets.

7.1. Internal Homogeneity to the Level of Individual Ships.

Further improvements could come from better resolving internal heterogeneity at 

more refined levels, such as quantifying offsets associated with distinct measurement 

characteristics of individual ships. Ship-level biases can lead to partially correlated 

errors across space and time as ships passing through different grid boxes (Kennedy, 

2014). Ship-level biases were estimated to have a similar magnitude to random 

measurement errors by comparing with satellite (Kennedy et al., 2012) or 

observational-constrained model simulations (Kent & Berry, 2008) using data in recent 

decades. Ship-level biases, however, have not yet been explicitly quantified for data 

before the 1970s. In version 3 of the HadSST data set, biases of individual ships were 

assumed to follow a Gaussian distribution that has a zero mean and a standard 

deviation of ship-level biases (Kennedy et al., 2011a), where the ship-level standard 

deviation was estimated by comparing ship-based SSTs with collocated satellite 
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retrievals since the 1990s (Kennedy et al., 2012). Uncertainties associated with ship-

level biases were inferred for gridded data sets after estimating the effective number 

of ships in individual 5  boxes (Kennedy et al., 2011a). Such a treatment better 

accounted for error covariance but could not remove biases associated with individual 

ships. In version 4 of HadSST (the latest version), ship-based SSTs were compared 

against upper-most temperature measurements from ocean profiles for data after 

World War II, with the assumption that profile measurements are free of bias Kennedy 

et al., 2019. Kennedy et al., 2019 assumed that ship-based SSTs and profile 

temperatures follow a multivariate normal distribution, which allows for estimating 

biases of gridded ship-based SST fields at the level of individual grid boxes. Such a 

method, to some extent, has implicitly accounted for ship-level biases.

The LME method appears to be a suitable approach for estimating offsets between 

individual ships, which should further increase internal homogeneity among 

measurements within ICOADS. Methodologically, quantifying ship-level offsets can be 

realized by assigning random effects for individual ships. A systematic implementation, 

however, is currently limited by the quality of ship information. A total of 44% of paired 

bucket SSTs from 1850 to 1970 do not have ship identifiers in raw ICOADS. Moreover, 

around 85% of ships having IDs have no more than 25 paired measurements, which is 

too few for robust offset estimates because random observational errors are estimated 

to be 0.74 C (Kennedy et al., 2012) To improve ship information, Carella et al. (2017) 

tried to track measurements with missing ship IDs and combine short tracks into 

longer ones. The tracking algorithm of Carella et al. (2017), however, is uncertain at 

ship crossings on which the LME inter-comparison entirely relies. A careful 

examination of the suitability of these tracked ships is, therefore, required before 

estimating ship-level offsets using the LME method. Other opportunities may come 

from redigitizing early ship logs or developing more robust tracking algorithms. In 

addition to improving metadata of ship information, the algorithm of fitting the LME 

model also needs to be modified to account for hundreds of thousands of additional 

parameters associated with individual ships.

7.2. External Consistency with Independent Instrumental Measurements 
and Paleo-Proxies.

Potential for further improvements may also come from improving external 

consistency with independent temperature measurements or proxies. Measurements 

from marine air temperatures Huang et al., 2017; Smith & Reynolds, 2002) and coastal 

land stations (Cowtan et al., 2018) have been used to quantify SST biases at the global 
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scale. Recent studies also use subsurface temperatures from ocean profiling data to 

estimate SST biases at both global and regional scales since the 1940s (e.g., Huang et 

al., 2018; Kennedy et al., 2019). In addition to these external data sources, I would like 

to call attention to the potential value of ocean temperatures at deeper depth and 

proxies from coral reefs. 

The deep ocean communicates with the surface through convective and diffusive 

processes (Gebbie & Huybers, 2011). Deep-ocean temperatures largely reflect SST 

variations at high latitudes where ocean convection is most active (Gebbie & Huybers, 

2011). Variability in deep-ocean temperatures, however, needs to be interpreted 

cautiously on account of possible smoothing associated with eddy diffusion, less 

constrained variability of ocean circulation, and a time lag between the surface and 

interior ocean. Alternatively, SSTs may contain information to constrain and 

reconstruct ocean circulation. Furthermore, similar to the SST problem, profiles that 

contain deep-ocean temperatures also come from various methods and nations 

(Meyssignac et al., 2019). Quality controls that involve group- or ship-level 

examination to profile data using the LME method appear necessary before calibrating 

SSTs.

There could also be value in paleoclimate proxies, a data source often considered to 

have higher noise and be less reliable than instrumental measurements. 

Mechanistically, heavier isotopes tend to enrich in the condensed phase due to kinetic 

fractionation (Urey, 1947). Heavy oxygen isotopes (e.g., O ) in coral reefs will, 

therefore, decrease with increasing water temperature, providing long-term and 

homogeneous approximations of SSTs (e.g., (Gagan et al., 2000; ). Pfeiffer et al., 2017) 

showed that proxy temperatures from coral reefs in the Indian Ocean do not show 

abrupt changes during World War II, which is consistent with our groupwise 

corrections. Coral reefs have the benefit of a broader coverage in tropical oceans, 

including the eastern Pacific, which is not frequently sampled by ships. Caution is 

required when interpreting oxygen isotopes. In certain regions that have abundant 

rainfall, such as the intertropical convergence zone, the concentration of O  in 

rainwater (thus seawater and coral reefs) decreases strongly with increasing rainfall, 

which could mask temperature signals (Gagan et al., 2000; Lee & Fung, 2008; Pfeiffer 

et al., 2017).

7.3. New Mapping Techniques.

In addition to correcting SST biases, an equally important problem in SST 

reconstructions involves mapping and infilling grids without observations to have 
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global coverage. Unlike typical kernel functions that have decaying covariance with 

increasing displacement, kernels preferred in climate sciences should account for 

covariance associated with large-scale variations in ocean and atmosphere (e.g., El 

Niño and Southern Oscillation). Most previous SST estimates use principal component 

analysis (PCA) to learn patterns of covariance from satellite observations since the 

1980s and assume stationarity (e.g., Hirahara et al., 2014; Huang et al., 2017; Rayner 

et al., 2003), even though satellite retrievals show that the details of the SST patterns 

are distinct across El Niño events in the past 40 years (Timmermann et al., 2018) 

Variational Bayesian methods have been proposed to learn patterns from ship-based 

SSTs that have a longer history (Ilin & Kaplan, 2009). Reconstructions from this 

method, however, contain patterns of ship tracks that we do not expect to exist in 

physical SSTs (Kennedy et al., 2013). The most recent advance involves using 

inpainting techniques in artificial intelligence and learning patterns from climate 

model simulations (Kadow et al., 2020), but whether such a method gives reliable error 

estimates remains questionable. As a result, a statistically rigorous mapping technique 

that accounts for physical climatic covariance assuming potentially nonstationary 

spatial covariance is necessary for reconstructing past climate variability and 

budgeting uncertainties.

7.4. A Unified Statistical Framework.

Quantification and correction of SST biases are often treated as separate steps from 

mapping and infilling for existing SST estimates (e.g., Hirahara et al., 2014; Huang et 

al., 2017; Rayner et al., 2003). Moreover, the mapping procedure is often further 

divided into separately performed substeps according to spatial scales of infilling. Such 

frameworks, however, make it difficult to budget and synthesize uncertainties in SST 

estimates arising from distinct analyzing steps. 

Developing a holistic statistical framework that unifies distinct steps appears to be a 

solution. Such a framework should incorporate random errors, systematic biases, and 

physical variations of global SSTs simultaneously with fully resolved covariance. 

Moreover, on account of potentially large uncertainties in estimates of physical SST 

covariance and observational errors and biases, a Bayesian method may be a more 

suitable framework for comprehensive quantification of SST uncertainties. Ideally, this 

framework should also take in biases and uncertainties we have learned from existing 

works and other pieces of useful information from independent external 

measurements. The Bayesian framework developed by Tingley & Huybers (2010) 

appears to be a valid starting point.
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8. Conclusion
Understanding the history of data is crucial, and one needs to be particularly careful 

when using data outside their historical context. Most historical SSTs were not 

collected for studying climate change. These measurements contain various biases due 

to distinct physical and historical reasons during data collection and postprocessing. 

Although these SSTs have irreplaceable value for understanding past climate 

variations, they are undercalibrated to have sufficient accuracy for climatic use. 

Contrary to complicated biases, previous SST corrections that assumed homogeneous 

bias structures appear oversimplified, which motivated our scrutinizing historical data. 

Insufficient corrections have led to substantial remaining errors that result in 

discrepancies between observations and model simulations of the historical period. 

When data and models disagree, one can almost always adjust the models so that they 

better reproduce the data, but being aware of the underlying assumption that data 

reflect reality and being skeptical about data quality appears to be a good practice.

My Ph.D. work is one step forward toward better resolving complicated SST biases and 

toward a more accurate depiction of the past climate. Our LME method is ignorant of 

the existence of data-model discrepancies, but accounting for data heterogeneity 

among nations and groups of collectors reconciles several data-model discrepancies 

and provides a more comprehensive estimate of SST uncertainties. These 

improvements will not be achieved and consolidated without combining evidence from 

statistical, physical, and historical aspects. Even though not assumed or built-in, the 

updated SST estimates show simpler spatial and temporal variations and are more in 

line with expected patterns of warming. Bringing observational estimates into accord 

with our current knowledge of forcing, climate sensitivity, and internal variability leads 

to greater confidence in future predictions of global warming made by climate models.

Disclosure Statement
The author is supported by a grant from the Harvard Global Institute and has no 

conflicts of interest to disclose.

Acknowledgments
I acknowledge the associate editor, the dataviz editor, and two anonymous reviewers 

for their constructive comments that greatly improved the quality of this review. I 

thank my advisor Peter Huybers for advice and helpful discussions throughout my 

Ph.D. study. I also thank Elizabeth C. Kent, Gabriel A. Vecchi, Wenchang Yang, and 



Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

31

David I. Berry for their collaboration and discussions on specific sections of my Ph.D. 

project. This review was initiated at the 2020 Harvard Horizons program, and I 

acknowledge Xiao-Li Meng, Edward J. Hall, Pamela Pollock, Hardeep Dhillon, the six 

other fellow scholars, and the staff at the Derek Bok Center for discussions on an 

initial version of Sections 1–3 of this review.

References
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., 

Hansingo, K., Hegerl, G., Hu, Y., Jain, S., et al. (2013). Detection and attribution of 

climate change: From global to regional. Climate Change 2013 – The Physical Science 

Basis: Working Group I Contribution to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge University Press. 

https://doi.org/10.1017/CBO9781107415324.022

Carella, G., Kennedy, J. J., Berry, D., Hirahara, S., Merchant, C. J., Morak-Bozzo, S., & 

Kent, E. C. (2018). Estimating sea surface temperature measurement methods using 

characteristic differences in the diurnal cycle. Geophysical Research Letters, 45 (1), 

363–371. https://doi.org/10.1002/2017GL076475

Carella, G., Kent, E. C., & Berry, D. I. (2017). A probabilistic approach to ship voyage 

reconstruction in ICOADS. International Journal of Climatology, 37 (5), 2233–2247. 

https://doi.org/10.1002/joc.4492

Chan, D., & Huybers, P. (2019). Systematic differences in bucket sea surface 

temperature measurements among nations identified using a linear-mixed-effect 

method. Journal of Climate, 32 (9), 2569–2589. https://doi.org/10.1175/JCLI-D-18-

0562.1

Chan, D., & Huybers, P. (2020a). Identifying and correcting the World War 2 warm 

anomaly in sea surface temperature measurements. EarthArXiv preprint. 

https://doi.org/10.31223/osf.io/ju26e

Chan, D., & Huybers, P. (2020b). Systematic differences in bucket sea surface 

temperatures caused by misclassification of engine room intake measurements. 

Journal of Climate, 33 (18), 7735–7753. https://doi.org/10.1175/JCLI-D-19-0972.1

Chan, D., Kent, E. C., Berry, D. I., & Huybers, P. (2019). Correcting datasets leads to 

more homogeneous early-twentieth-century sea surface warming. Nature, 571 (7765), 

393. https://doi.org/10.1038/s41586-019-1349-2

https://doi.org/10.1017/CBO9781107415324.022
https://doi.org/10.1002/2017GL076475
https://doi.org/10.1002/joc.4492
https://doi.org/10.1175/JCLI-D-18-0562.1
https://doi.org/10.31223/osf.io/ju26e
https://doi.org/10.1175/JCLI-D-19-0972.1
https://doi.org/10.1038/s41586-019-1349-2


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

32

Chan, D., Vecchi, G. A., Yang, W., & Huybers, P. (2020). Correcting sea surface 

temperatures improves simulations of historical hurricane activity. EarthArXiv 

preprint. https://doi.org/10.31223/osf.io/huz73

Chen, P. (2004). World War II Database.

Chen, X., & Tung, K.-K. (2014). Varying planetary heat sink led to global-warming 

slowdown and acceleration. Science, 345 (6199), 897–903. 

https://doi.org/10.1126/science.1254937

Cowtan, K., Rohde, R., & Hausfather, Z. (2018). Evaluating biases in sea surface 

temperature records using coastal weather stations. Quarterly Journal of the Royal 

Meteorological Society, 144 (712), 670–681. https://doi.org/10.1002/qj.3235

Easterling, D. R., & Wehner, M. F. (2009). Is the climate warming or cooling? 

Geophysical Research Letters, 36 (8). https://doi.org/10.1029/2009GL037810

Folland, C. K., Boucher, O., Colman, A., & Parker, D. E. (2018). Causes of irregularities 

in trends of global mean surface temperature since the late 19th century. Science 

Advances, 4 (6), EAAO5297. https://doi.org/10.1126/sciadv.aao5297

Folland, C. K., & Parker, D. (1995). Correction of instrumental biases in historical sea 

surface temperature data. Quarterly Journal of the Royal Meteorological Society, 121 

(522), 319– 367. https://doi.org/10.1002/qj.49712152206

Folland, C. K., Parker, D., & Kates, F. (1984). Worldwide marine temperature 

fluctuations 1856–1981. Nature, 310 (5979), 670–673. 

https://doi.org/10.1038/310670a0

Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, 

D. I., Brohan, P., Eastman, R., Gates, L., et al. (2017). ICOADS Release 3.0: A major 

update to the historical marine climate record. International Journal of Climatology, 37 

(5), 2211–2232. https://doi.org/10.1002/joc.4775

Fyfe, J. C., Gillett, N. P., & Zwiers, F. W. (2013). Overestimated global warming over the 

past 20 years. Nature Climate Change, 3 (9), 767–769. 

https://doi.org/10.1038/nclimate1972

Gagan, M., Ayliffe, L., Beck, J. W., Cole, J., Druffel, E., Dunbar, R. B., & Schrag, D. 

(2000). New views of tropical paleoclimates from corals. Quaternary Science Reviews, 

19 (1-5), 45–64. https://doi.org/10.1//016/S0277-3791(99)00054-2

https://doi.org/10.31223/osf.io/huz73
https://doi.org/10.1126/science.1254937
https://doi.org/10.1002/qj.3235
https://doi.org/10.1029/2009GL037810
https://doi.org/10.1126/sciadv.aao5297
https://doi.org/10.1002/qj.49712152206
https://doi.org/10.1038/310670a0
https://doi.org/10.1002/joc.4775
https://doi.org/10.1038/nclimate1972
https://doi.org/10.1016/S0277-3791(99)00054-2


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

33

Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., Fiorino, 

M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., et al. (1999). An overview of the results of 

the Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the American 

Meteorological Society, 80 (1), 29–56. https://doi.org/10.1175/1520-

0477(1999)080<0029:AOOTRO>2.0.CO;2

Gebbie, G., & Huybers, P. (2011). How is the ocean filled? Geophysical Research 

Letters, 38(6). https://doi.org/10.1029/2011GL046769

Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. 

Reviews of Geophysics, 48 (4). https://doi.org/10.1029/2010RG000345

Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V., Brönnimann, S., 

Charabi, Y. A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., et al. 

(2013). Observations: Atmosphere and surface. Climate Change 2013 – The Physical 

Science Basis: Working Group I Contribution to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge University Press. 

https://doi.org/10.1017/CBO9781107415324.008

Hausfather, Z., Cowtan, K., Clarke, D. C., Jacobs, P., Richardson, M., & Rohde, R. 

(2017). Assessing recent warming using instrumentally homogeneous sea surface 

temperature records. Science Advances, 3(1), e1601207. 

https://doi.org/10.1126/sciadv.1601207

Hegerl, G. C., Brönnimann, S., Schurer, A., & Cowan, T. (2018). The early 20th century 

warming: Anomalies, causes, and consequences. Wiley Interdisciplinary Reviews: 

Climate Change, 9 (4), e522. https://doi.org/10.1002/wcc.522

Hervey, R. V. (2014). Meteorological and oceanographic data collected from the 

National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored 

(weather) buoys during 2014-03 (NODC Accession 0117682). Version 1.1. National 

Oceanographic Data Center, NOAA. Dataset. https://data.nodc.noaa.gov/cgi-bin/iso?

id=gov.noaa.nodc:0117682

Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-scale sea surface temperature 

analysis and its uncertainty. Journal of Climate, 27 (1), 57–75. 

https://doi.org/10.1175/JCLI-D-12-00837.1

Huang, B., Angel, W., Boyer, T., Cheng, L., Chepurin, G., Freeman, E., Liu, C., & Zhang, 

H.-M. (2018). Evaluating SST analyses with independent ocean profile observations. 

https://doi.org/10.1175/1520-0477(1999)080%3c0029:AOOTRO%3e2.0.CO;2
https://doi.org/10.1029/2011GL046769
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1017/CBO9781107415324.008
https://doi.org/10.1126/sciadv.1601207
https://doi.org/10.1002/wcc.522
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0117682
https://doi.org/10.1175/JCLI-D-12-00837.1


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

34

Journal of Climate, 31 (13), 5015–5030. https://doi.org/10.1175/JCLI-D-17-0824.1

Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. 

M., Thorne, P. W., Woodruff, S. D., & Zhang, H.-M. (2015). Extended reconstructed sea 

surface temperature, version 4 (ERSSTv4). Part I: Upgrades and intercomparisons. 

Journal of Climate, 28 (3), 911–930. https://doi.org/10.1175/JCLI-D-14-00006.1

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., 

Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended reconstructed 

sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and 

intercomparisons. Journal of Climate, 30 (20), 8179–8205. https://doi.org/10.1175/JCLI-

D-16-0836.1

Ilin, A., & Kaplan, A. (2009). Bayesian PCA for reconstruction of historical sea surface 

temperatures. 2009 International Joint Conference on Neural Networks, 1322–1327. 

https://doi.org/10.1109/IJCNN.2009.5178744

Jones, G. S., Stott, P. A., & Christidis, N. (2013). Attribution of observed historical near–

surface temperature variations to anthropogenic and natural causes using CMIP5 

simulations. Journal of Geophysical Research: Atmospheres, 118 (10), 4001–4024. 

https://doi.org/10.1002/jgrd.50239

Jones, P. (2016). The reliability of global and hemispheric surface temperature records. 

Advances in Atmospheric Sciences, 33 (3), 269–282. https://doi.org/10.1007/s00376-

015-5194-4

Kadow, C., Hall, D. M., & Ulbrich, U. (2020). Artificial intelligence reconstructs missing 

climate information. Nature Geoscience, 1–6. https://doi.org/10.1038/s41561-020-0582-

5

Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne, M. J., 

Peterson,

T. C., Vose, R. S., & Zhang, H.-M. (2015). Possible artifacts of data biases in the recent 

global surface warming hiatus. Science, 348 (6242), 1469–1472. 

https://doi.org/10.1126/science.aaa5632

Kennedy, J. J. (2014). A review of uncertainty in in situ measurements and data sets of 

sea surface temperature. Reviews of Geophysics, 52 (1), 1–32. 

https://doi.org/10.1002/2013RG000434 

https://doi.org/10.1175/JCLI-D-17-0824.1
https://doi.org/10.1175/JCLI-D-14-00006.1
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1109/IJCNN.2009.5178744
https://doi.org/10.1002/jgrd.50239
https://doi.org/10.1007/s00376-015-5194-4
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1126/science.aaa5632
https://doi.org/10.1002/2013RG000434


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

35

Kennedy, J. J., Brohan, P., & Tett, S. (2007). A global climatology of the diurnal 

variations in sea-surface temperature and implications for MSU temperature trends. 

Geophysical Research Letters, 34 (5). https://doi.org/10.1029/2006GL028920

Kennedy, J. J., Rayner, N., Atkinson, C., & Killick, R. (2019). An ensemble data set of sea 

surface temperature change from 1850: The Met Office Hadley Centre HadSST. 4.0.0.0 

data set. Journal of Geophysical Research: Atmospheres, 124 (14), 7719–7763. 

https://doi.org/10.1029/2018JD029867

Kennedy, J. J., Rayner, N., Smith, R., Parker, D., & Saunby, M. (2011a). Reassessing 

biases and other uncertainties in sea surface temperature observations measured in 

situ since 1850: 1. Measurement and sampling uncertainties. Journal of Geophysical 

Research: Atmospheres, 116 (D14). https://doi.org/10.1029/2010JD015218

Kennedy, J. J., Rayner, N., Smith, R., Parker, D., & Saunby, M. (2011b). Reassessing 

biases and other uncertainties in sea surface temperature observations measured in 

situ since 1850:

2. Biases and homogenization. Journal of Geophysical Research: Atmospheres, 116 

(D14). https://doi.org/10.1029/2010JD015220

Kennedy, J. J., Rayner, N., Saunby, M., & Millington, S. (2013). Bringing together 

measurements of sea surface temperature made in situ with retrievals from satellite 

instruments to create a globally complete analysis for 1850 onwards, HadISST2. EGU 

General Assembly Conference Abstracts, 15.

Kennedy, J. J., Smith, R. O., & Rayner, N. A. (2012). Using AATSR data to assess the 

quality of in situ sea-surface temperature observations for climate studies. Remote 

Sensing of Environment, 116, 79–92. https://doi.org/10.1016/j.rse.2010.11.021

Kent, E. C., & Berry, D. I. (2008). Assessment of the marine observing system 

(ASMOS): Final report.

Kent, E. C., Kennedy, J. J., Berry, D. I., & Smith, R. O. (2010). Effects of instrumentation 

changes on sea surface temperature measured in situ. Wiley Interdisciplinary Reviews: 

Climate Change, 1 (5), 718–728. https://doi.org/10.1002/wcc.55

Kent, E. C., Kennedy, J. J., Smith, T. M., Hirahara, S., Huang, B., Kaplan, A., Parker, D. 

E., Atkinson, C. P., Berry, D. I., Carella, G., et al. (2017). A call for new approaches to 

quantifying biases in observations of sea surface temperature. Bulletin of the American 

Meteorological Society, 98 (8), 1601–1616. https://doi.org/10.1175/BAMS-D-15-00251.1

https://doi.org/10.1029/2006GL028920
https://doi.org/10.1029/2018JD029867
https://doi.org/10.1029/2010JD015218
https://doi.org/10.1029/2010JD015220
https://doi.org/10.1016/j.rse.2010.11.021
https://doi.org/10.1002/wcc.55
https://doi.org/10.1175/BAMS-D-15-00251.1


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

36

Kent, E. C., & Taylor, P. K. (2006). Toward estimating climatic trends in SST. Part I: 

Methods of measurement. Journal of Atmospheric and Oceanic Technology, 23 (3), 464–

475. https://doi.org/10.1175/JTECH1843.1

Kent, E. C., Woodruff, S. D., & Berry, D. I. (2007). Metadata from WMO publication no. 

47 and an assessment of voluntary observing ship observation heights in ICOADS. 

Journal of Atmospheric and Oceanic Technology, 24 (2), 214–234. 

https://doi.org/10.1175/JTECH1949.1

Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific 

surface cooling. Nature, 501 (7467), 403–407. https://doi.org/10.1038/nature12534

Lapenis, A. G. (1998). Arrhenius and the Intergovernmental Panel on Climate Change. 

Eos, Transactions American Geophysical Union, 79 (23), 271–271. 

https://doi.org/10.1029/98EO00206

Lee, J.-E., & Fung, I. (2008). ‘‘Amount effect” of water isotopes and quantitative 

analysis of post-condensation processes. Hydrological Processes: An International 

Journal, 22 (1), 1–8. https://doi.org/10.1002/hyp.6637

Maher, N., Gupta, A. S., & England, M. H. (2014). Drivers of decadal hiatus periods in 

the 20th and 21st centuries. Geophysical Research Letters, 41 (16), 5978–5986. 

https://doi.org/10.1002/2014GL060527

Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling 

controversies about the global warming hiatus. Nature, 545 (7652), 41–47. 

https://doi.org/10.1038/nature22315

Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Köhl, 

A., Kato, S., L’Ecuyer, T., Ablain, M., et al. (2019). Measuring global ocean heat content 

to estimate the Earth energy imbalance. Frontiers in Marine Science, 6, 432. 

https://doi.org/10.3389/fmars.2019.00432

Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying 

uncertainties in global and regional temperature change using an ensemble of 

observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: 

Atmospheres, 117 (D8). https://doi.org/10.1029/2011JD017187

Pfeiffer, M., Zinke, J., Dullo, W.-C., Garbe-Schönberg, D., Latif, M., & Weber, M. (2017). 

Indian Ocean corals reveal crucial role of World War II bias for twentieth century 

https://doi.org/10.1175/JTECH1843.1
https://doi.org/10.1175/JTECH1949.1
https://doi.org/10.1038/nature12534
https://doi.org/10.1029/98EO00206
https://doi.org/10.1002/hyp.6637
https://doi.org/10.1002/2014GL060527
https://doi.org/10.1038/nature22315
https://doi.org/10.3389/fmars.2019.00432
https://doi.org/10.1029/2011JD017187


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

37

warming estimates. Scientific Reports, 7 (1), 1–11. https://doi.org/10.1038/s41598-017-

14352-6

Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L., Rowell, D., Kent, E. 

C.,   & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and 

night marine air temperature since the late nineteenth century. Journal of Geophysical 

Research: Atmospheres, 108 (D14). https://doi.org/10.1029/2002JD002670

Roemmich, D., Boebel, O., Desaubies, Y., Freeland, H., King, B., LeTraon, P.-Y., 

Molinari, R., Owens, B., Riser, S., Send, U., et al. (1999). Argo: The global array of 

profiling floats. CLIVAR Exchanges, 13 (4(3)), 4–5.

Shankar, P. (2020). Tutorial overview of simple, stratified, and parametric 

bootstrapping. Engineering Reports, 2 (1), e12096. https://doi.org/10.1002/eng2.12096

Smith, T. M., & Reynolds, R. W. (2002). Bias corrections for historical sea surface 

temperatures based on marine air temperatures. Journal of Climate, 15 (1), 73–87. 

https://doi.org/10.1175/1520-0442(2002)015<0073:BCFHSS>2.0.CO;2

Smith, T. M., Reynolds, R. W., Peterson, T. C., & Lawrimore, J. (2008). Improvements to 

NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). 

Journal of Climate, 21 (10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1

Stevens, B. (2015). Rethinking the lower bound on aerosol radiative forcing. Journal of 

Climate, 28 (12), 4794–4819. https://doi.org/10.1175/JCLI-D-14-00656.1

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the 

experiment design. Bulletin of the American Meteorological Society, 93 (4), 485–498. 

https://doi.org/10.1175/BAMS-D-11-00094.1

Thompson, D. W., Kennedy, J. J., Wallace, J. M., & Jones, P. D. (2008). A large 

discontinuity in the mid-twentieth century in observed global-mean surface 

temperature. Nature, 453 (7195), 646–649. https://doi.org/10.1038/nature06982

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K. M., 

Lengaigne, M., McPhaden, M. J., Stuecker, M. F., et al. (2018). El Niño–southern 

oscillation complexity. Nature, 559 (7715), 535–545. https://doi.org/10.1038/s41586-

018-0252-6

Tingley, M. P., & Huybers, P. (2010). A Bayesian algorithm for reconstructing climate 

anomalies in space and time. Part I: Development and applications to paleoclimate 

https://doi.org/10.1038/s41598-017-14352-6
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1002/eng2.12096
https://doi.org/10.1175/1520-0442(2002)015%3c0073:BCFHSS%3e2.0.CO;2
https://doi.org/10.1175/2007JCLI2100.1
https://doi.org/10.1175/JCLI-D-14-00656.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1038/nature06982
https://doi.org/10.1038/s41586-018-0252-6


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

38

reconstruction problems. Journal of Climate, 23 (10), 2759–2781. 

https://doi.org/10.1175/2009JCLI3015.1

Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of 

the Chemical Society (Resumed), 562–581. https://doi.org/10.1039/jr9470000562

Uwai, T., & Komura, K. (1992). The collection of historical ships’ data in Kobe marine 

observatory. Proceedings of the International COADS Workshop, Boulder, CO, USA, 13–

15.

Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg, A. T., Zeng, 

F., Zhang, W., Baldwin, J. W., Bhatia, K. T., Cooke, W., et al. (2019). Tropical cyclone 

sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and 

background climate changes. Climate Dynamics, 53 (9-10), 5999–6033. 

https://doi.org/10.1007/s00382-019-04913-y

Vecchi, G. A., Fueglistaler, S., Held, I. M., Knutson, T. R., & Zhao, M. (2013). Impacts of 

atmospheric temperature trends on tropical cyclone activity. Journal of Climate, 26 

(11), 3877–3891. https://doi.org/10.1175/JCLI-D-12-00503.1

Vecchi, G. A., & Knutson, T. R. (2008). On estimates of historical North Atlantic tropical 

cyclone activity. Journal of Climate, 21 (14), 3580–3600. 

https://doi.org/10.1175/2008JCLI2178.1

Vecchi, G. A., Msadek, R., Anderson, W., Chang, Y.-S., Delworth, T., Dixon, K., Gudgel, 

R., Rosati, A., Stern, B., Villarini, G., Wittenberg, A., Yang, X., Zeng, F., Zhang, R., & 

Zhang, S. (2013). Multiyear predictions of North Atlantic hurricane frequency: Promise 

and limitations. Journal of Climate, 26 (15), 5337–5357. https://doi.org/10.1175/JCLI-D-

12-00464.1

Vecchi, G. A., Swanson, K. L., & Soden, B. J. (2008). Whither hurricane activity? 

Science, 687–689. https://doi.org/10.1126/science.1164396

Vecchi, G. A., Zhao, M., Wang, H., Villarini, G., Rosati, A., Kumar, A., Held, I. M., & 

Gudgel, R. (2011). Statistical–dynamical predictions of seasonal North Atlantic 

hurricane activity. Monthly Weather Review, 139 (4), 1070–1082. 

https://doi.org/10.1175/2010MWR3499.1

Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleason, B., Huang, B., Kearns, 

E., Lawrimore, J. H., Menne, M. J., Peterson, T. C., et al. (2012). NOAA’s merged land–

https://doi.org/10.1175/2009JCLI3015.1
https://doi.org/10.1039/jr9470000562
https://doi.org/10.1007/s00382-019-04913-y
https://doi.org/10.1175/JCLI-D-12-00503.1
https://doi.org/10.1175/2008JCLI2178.1
https://doi.org/10.1175/JCLI-D-12-00464.1
https://doi.org/10.1126/science.1164396
https://doi.org/10.1175/2010MWR3499.1


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

39

ocean surface temperature analysis. Bulletin of the American Meteorological Society, 

93 (11), 1677– 1685. https://doi.org/10.1175/BAMS-D-11-00241.1

Wilkinson, C., Woodruff, S. D., Brohan, P., Claesson, S., Freeman, E., Koek, F., Lubker, 

S. J., Marzin, C., & Wheeler, D. (2011). Recovery of logbooks and international marine 

data: The RECLAIM project. International Journal of Climatology, 31 (7), 968–979. 

https://doi.org/10.1002/joc.2102

Woodruff, S. D., Diaz, H. F., Elms, J. D., & Worley, S. J. (1998). COADS Release 2 data 

and metadata enhancements for improvements of marine surface flux fields. Physics 

and Chemistry of the Earth, 23 (5-6), 517–526. https://doi.org/10.1016/S0079-

1946(98)00064-0

Woodruff, S. D., Slutz, R. J., Jenne, R. L., & Steurer, P. M. (1987). A comprehensive 

ocean- atmosphere data set. Bulletin of the American Meteorological Society, 68 (10), 

1239–1250. https://doi.org/10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2

Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Eric Freeman, J., Berry, D. I., Brohan, 

P., Kent, E. C., Reynolds, R. W., Smith, S. R., et al. (2011). ICOADS Release 2.5: 

Extensions and enhancements to the surface marine meteorological archive. 

International Journal of Climatology, 31 (7), 951–967. https://doi.org/10.1002/joc.2103

Worley, S. J., Woodruff, S. D., Reynolds, R. W., Lubker, S. J., & Lott, N. (2005). ICOADS 

release 2.1 data and products. International Journal of Climatology: A Journal of the 

Royal Meteorological Society, 25 (7), 823–842. https://doi.org/10.1002/joc.1166

Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., & Jin, F.-F. (2009). El 

Niño in a changing climate. Nature, 461 (7263), 511. 

https://doi.org/10.1038/nature08316

York, D., Evensen, N. M., Martınez, M. L., & De Basabe Delgado, J. (2004). Unified 

equations for the slope, intercept, and standard errors of the best straight line. 

American Journal of Physics, 72 (3), 367–375. https://doi.org/10.1119/1.1632486

Zhao, M., Held, I. M., Lin, S.-J., & Vecchi, G. A. (2009). Simulations of global hurricane 

climatology, interannual variability, and response to global warming using a 50-km 

resolution GCM. Journal of Climate, 22 (24), 6653–6678. 

https://doi.org/10.1175/2009JCLI3049.1

https://doi.org/10.1175/BAMS-D-11-00241.1
https://doi.org/10.1002/joc.2102
https://doi.org/10.1016/S0079-1946(98)00064-0
https://doi.org/10.1175/1520-0477(1987)068%3c1239:ACOADS%3e2.0.CO;2
https://doi.org/10.1002/joc.2103
https://doi.org/10.1002/joc.1166
https://doi.org/10.1038/nature08316
https://doi.org/10.1119/1.1632486
https://doi.org/10.1175/2009JCLI3049.1


Harvard Data Science Review • Issue 3.1, Winter 2021
Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface

Temperature Records

40

Appendix

Stratified Bootstrapping for Estimating Uncertainties in the Evolution of the 
Amplitude–Offset Relationship

Similar to Figure 6c, Chan & Huybers (2020b) also investigated the evolution of the 

amplitude–offset relationship using a sliding 20-year window. The bootstrapping in 

Chan & Huybers (2020b) resamples available groups in each 20-year analysis 

independently, which gives a reasonable uncertainty estimate within each 20-year 

analysis but may not be optimal for intercomparing slopes across 20-year analyses. 

Here, I supplement earlier estimates by resampling groups with their entire history of 

diurnal amplitudes and groupwise offsets, which also estimates the path-wise 

uncertainty. Moreover, to account for the reduced number of groups before the 1950s, 

a stratified resampling scheme (Shankar, 2020) is used to guarantee that the 

resampled groups better reflect the prevalence of groups throughout the history of 

marine observation. Specifically, groups are divided into two strata based on whether 

they were present in 20-year windows before 1940–1959. The resampling is then 

performed within each stratum with replacement and repeated 10,000 times. On 

average, updating the bootstrapping technique slightly increases the 95% CI of York fit 

slopes by 6%, and the interquartile range by 1%. Among the 10,000 time series of 

bootstrapped York regression slope, 9,306 of them have, on average, positive values 

over 1910–1929 but negative values afterward, indicating that the relationship 

between diurnal amplitudes and groupwise offsets changed sign significantly ( ) 

in the 1930s. A Matlab script to reproduce this updated bootstrapping analysis is in 

the supplement to this article.

Supplementary Files

HDSR_SST_Supp_1_LME_offsets_bucket_SSTs.txt 150 KB

HDSR_SST_Supp_2_Bootstrapping_LME_DA_analysis.m 17 KB

HDSR_SST_Supp_3_LME_DA_Tropics_1890_2000.mat 73 KB
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