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ABSTRACT

Attribution studies conclude that it is extremely likely that most observed global- and continental-scale

surface air temperature (SAT) warming since 1950 was caused by anthropogenic forcing, but some difficulties

and uncertainties remain in attribution of warming in subcontinental regions and at time scales less than 50

years. This study uses global observations and CMIP5 simulations with various forcings, covering 1979–2005,

and control runs to develop confidence intervals, to attribute regional trends of SAT and sea surface tem-

perature (SST) to natural and anthropogenic causes.

Observations show warming, significantly different from natural variations at the 95% confidence level,

over one-third of all grid boxes, and averaged over 15 of 21 subcontinental regions and 6 of 10 ocean basins.

Coupled simulations forced with all forcing factors, or greenhouse gases only, reproduce observed SST and

SAT patterns. Uncoupled AMIP-like atmosphere-only (prescribed SST and atmospheric radiative forcing)

simulations reproduce observed SAT patterns. All of these simulations produce consistent net downward

longwave radiation patterns. Simulations with natural-only forcing simulate weak warming. Anthropogenic

forcing effects are clearly detectable at the 5% significance level at global, hemispheric, and tropical scales

and in nine ocean basins and 15 of 21 subcontinental land regions. Attribution results indicate that ocean

warming during 1979–2005 for the globe and individual basins is well represented in the CMIP5 multimodel

ensemble mean historical simulations. While land warming may occur as an indirect response to oceanic

warming, increasing greenhouse gas concentrations tend to be the ultimate source of land warming in most

subcontinental regions during 1979–2005.

1. Introduction

Attribution studies have indicated that it is extremely

likely that there has been a substantial anthropogenic

contribution to global and continental surface air tem-

perature (SAT) increases since the middle of the twen-

tieth century (Hegerl et al. 2007; Bindoff et al. 2014). On

subcontinental and smaller scales, the relative contri-

bution of internal variability compared to the forced

response to observed changes tends to be larger, since

spatial differences in internal variations are averaged

out in large-scale means. Several recent studies have

applied attribution analyses to subcontinental scale re-

gions since 1950 (Zhang et al. 2006;Min andHense 2006;

Jones et al. 2008; Wu 2010; Christidis et al. 2010, 2012;

Knutson et al. 2013; Jones et al. 2013). These studies

concluded that it is likely that anthropogenic forcing has

made a substantial contribution to warming of the in-

habited continents over 50-yr or longer periods.

Several traditional Atmospheric Model Intercom-

parison Project (AMIP) experiments, forced by prescribed

observed sea surface temperature (SST) and sea ice, suc-

cessfully capture patterns of observed trends in SAT

(Compo and Sardeshmukh 2009; Dommenget 2009;

Pegion and Kumar 2010; Shin and Sardeshmukh 2011)

and atmospheric circulation (Deser and Phillips 2009) in

the period of 1950–2000. These studies find that most

land warming is caused by oceanwarming and not by the

local response to radiative forcings, thus emphasizing the

significant role of remote oceanic influences on conti-

nental warming. We compare the 20-yr observed SAT

trend over the period of 1980–99 with corresponding

forced trends from phase 3 of the Coupled Model In-

tercomparison Project (CMIP3) AMIP and twentieth-

century historical simulation (20C3M) experiments, and
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find that both CMIP3 20C3M and AMIP multimodel

ensemble mean simulations reproduce observed SAT

trend patterns, and these two simulations produce con-

sistent net downward longwave radiation (RLDS) and

SAT trend patterns (see the appendix). Compo and

Sardeshmukh (2009) suggest that the recent oceanic

warming has caused the continents to warm through

a hydrodynamic–radiative teleconnection mechanism: 1)

the warmed ocean tends to release more water vapor and

increase the specific humidity at every level of the at-

mosphere, which will in turn increase downwelling

longwave radiation and surface temperature; and 2) in-

creased SST further influences land warming by adjusting

atmospheric circulation, leading to changes in cloud

cover and absorption of downwelling shortwave radiation

in some land regions. Many aspects of the response of

SAT to global SST changes can be reproduced in simu-

lations in which SST changes are prescribed only in the

tropics (e.g., Hoerling et al. 2001; Schneider et al. 2003;

Hurrell et al. 2004; Deser and Phillips 2009; Shin and

Sardeshmukh 2011).

The oceans may themselves have warmed (or cooled in

small areas) from a combination of natural variability and

anthropogenic influences. The last two Intergovernmental

Panel on Climate Change (IPCC) reports conclude that

the warming of the upper several hundredmeters of ocean

during the second half of the twentieth century was

‘‘likely’’ to have been caused by anthropogenic forcing

(Hegerl et al. 2007; Bindoff et al. 2014). Recent studies find

that upper-ocean temperature changes during the second

half of the twentieth century are consistent with the

changes expected due to human forcing of the climate

system (Barnett et al. 2005; Gleckler et al. 2012; Pierce

et al. 2012). But Shin and Sardeshmukh (2011) show that

several fully coupled GCMs, forced by prescribed obser-

vational radiative forcings, tend to largely underestimate

the magnitude of the observed tropical SST trend during

1950–2000 over the Indian Ocean and east Pacific, and

generally do not capture the regional trend pattern of SAT

over landmasses surrounding the North Atlantic Ocean.

The land and ocean warming trend has intensified

since the late 1970s (Trenberth et al. 2007), resulting in

significant regional ecosystem and societal impacts

(Rosenzweig et al. 2008). An estimate of the anthropo-

genic contribution to recent temperature trends at sub-

continental scales is of considerable practical importance,

as natural andhuman systems aremore likely to be affected

by regional temperature changes when these changes

are outside the range normally experienced. Although

Knutson et al. (2013) have found anthropogenic-induced

land warming trends in several continental and large land

regions since the 1970s, we intend to investigate what

proportion of land warming in 21 subcontinental regions

can be attributed to external anthropogenic forcing or

global ocean warming, and further quantify contributions

of anthropogenic and natural forcings to observed sub-

continental warming trends through an attribution study.

Considering the importance of the correct representation

of SST changes for simulating land warming (Shin and

Sardeshmukh 2011), we will also examine whether the

global and tropical ocean warming is well reproduced since

1979 in phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012) runs through the at-

tribution study and the global field significance test.

CMIP5 updates the previous CMIP3 experiment and

contains a large multimodel archive of forced simula-

tions. We use CMIP5 model run outputs to investigate

what proportion of observed ocean warming during

1979–2005 can be attributed to external anthropogenic

forcing, and then clarify the relative importance of

TABLE 1. Abbreviated names and coordinates for oceanic re-

gions, and the subcontinental regions (from Giorgi 2002) used in

the analysis.

Region name and abbreviation

Coordinates

Longitude Latitude

Northern Hemisphere NH 08–3608 08–908N
Southern Hemisphere SH 08–3608 08–908S
Tropical Ocean TO 08–3608 208S–208N
Tropical Indian Ocean TIO 408–1208E 208S–208N
Tropical west Pacific TWP 1108–1558E 208S–208N
Tropical Atlantic Ocean TAO 708W–108E 208S–208N
North Pacific Ocean NPO 1208E–1208W 208–708N
South Pacific Ocean SPO 1408E–708W 608–208S
North Atlantic Ocean NAO 908W–08 208–708N
Tropical central Pacific TCP 1708–1258W 208S–208N
Tropical eastern Pacific TEP 1258–758W 208S–208N
South Indian Ocean SIO 158–1408E 608–208S
South Atlantic Ocean SAO 658W–158E 608–208S
Northern South America NSA 808–358W 208S–108N
Mexico MEX 1158–808W 108–308N
Western North America WNA 1308–1058W 308–608N
Greenland GRL 1058–108W 508–808N
Mediterranean MED 108W–408E 308–508N
Northern Europe NEU 108W–408E 508–758N
Western Africa WAF 208W–208E 108S–208N
Eastern Africa EAF 208–508E 108S–208N
Southern Africa SAF 108–408E 358–108S
Northern Africa NAF 208W–658E 208–308N
East Asia EAS 1008–1458E 208–508N
Central Asia CAS 408–758E 308–508N
Tibetan TIB 758–1008E 308–508N
Siberian SIB 408E–1808 508–708N
Central North America CNA 1058–858W 308–508N
Alaska ALA 1708–1058W 608–708N
Southeast Asia SEA 908–1558E 108S–208N
South Asia SAS 658–1008E 58–308N
Eastern North America ENA 858–608W 208–508N
Australia AUS 1108–1558E 408–108S
Southern South America SSA 758–408W 608–208S
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external radiative forcing changes (due to greenhouse

gases and other factors) and global SST warming on

subcontinental SAT trends. The trend over 1950–78 is

nearly zero in the global mean temperature, and 1979

approximately reflects the beginning of the peak

warming period. The 1979–2005 period is chosen since

most CMIP5 historical runs end in 2005 (projected

forcing is used starting 2006) and AMIP-like runs in

CMIP5 are from 1979 to 2008. Our study is comple-

mentary to previous attribution studies that focus on

SAT and SST trends over 50-yr and longer periods and

thereby strengthens existing detection and attribution

evidence.

The paper is arranged as follows. Section 2 describes

the data sources and analysis techniques. Section 3 in-

vestigates attribution of SAT and SST trends on global,

hemispheric, and regional land or ocean basin scales.

Section 4 summarizes conclusions.

2. Data and method

Observed data are obtained from HadCRUT4

(Kennedy et al. 2011), a blend of the CRUTEM4 land

SAT and HadSST3 SST datasets, for 1979–2005 on a 58
latitude–longitude grid. Only grid boxes having more

than 66% of years available are included in the trend

TABLE 2. CMIP5 model runs downloaded for this study from http://cmip-pcmdi.llnl.gov/cmip5/index.html. The top headings identify

data types, grids of monthly average surface air temperature (SAT), net downward longwave radiation (RLDS), and sea surface tem-

perature (SST). Subheadings CTR indicate the length (yr) of the preindustrial control simulation for eachmodel, and the number of initial

condition ensemble members for historical atmospheric-only runs with prescribed SST and atmospheric radiative forcing (AMIP), his-

torical runs with all anthropogenic and natural forcings (HIST), historical runs with greenhouse gas forcing (GHG), and historical runs

with natural forcing (NAT). All historical runs cover 1979–2005. The bottom row (SUM) shows total years of CTR simulations and all

other columns show the number of ensemble members. (Expansions of all model names are available online at http://www.ametsoc.org/

PubsAcronymList.)

Models

SAT/RLDS SST

CTR AMIP HIST GHG NAT CTR HIST GHG NAT

ACCESS1.0 1 1 1

BCC-CSM1.1 3 3 1 1 3 1 1

BCC-CSM1.1(m) 3 3 400 3

CanESM2 995 5 5 5 5 5 5

CCSM4 500 5 6 3 4 500 6 3 3

CESM1-CAM5 2 3 320 3

CMCC-CESM 1 1

CMCC-CM 3 1 1

CNRM-CM5 800 1 5 5 5 5 5 5

CSIRO-Mk3.6.0 500 9 9 5 5 9 5 5

FGOALS-g2 700 1 5 1 3 5

GFDL-CM3 500 5 5 3 3 500 5 3 3

GFDL-ESM2G 500 1 500 1

GFDL-ESM2M 500 1 1 1 500 1 1 1

GFDL-HIRAM-C180 3

GISS-E2-H 540 5 5 5 5 3 5

GISS-E2-R 550 6 5 5 5 550 6 5 5

HadGEM2-A 1

HadGEM2-AO 1 1

HadGEM2-CC 242 1 242 1

HadGEM2-ES 337 — 4 4 4 496 4 4 4

INM-CM4 1 1 1

IPSL-CM5A-LR 1000 5 5 3 3 1000 5 3 3

IPSL-CM5A-MR 300 3 3 3 300 3 3 2

IPSL-CM5B-LR 300 1 1 300 1

MIROC-ESM 530 3 3 3 680 3

MIROC-ESM-CHEM 255 1 1 1

MIROC5 600 2 1 600 1

MPI-ESM-LR 1000 3 3 1000 3

MPI-ESM-MR 1000 3 3 3

MRI-CGCM3 500 3 3 1 1 500 3 1 1

MRI-ESM1 1 1

NorESM1-M 500 3 3 1 1 500 3 1 1

SUM 12649 67 93 50 50 8888 89 43 44
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analysis. We consider trends of surface temperature

for the globe, NH and SH ocean and land, the tropics,

10 ocean basins, 6 continental and 21 large sub-

continental land regions (see Table 1 and Fig. 2f; ab-

breviations for regions are expanded in Table 1), and

individual grid boxes. The 21 subcontinental regions

are defined by Giorgi (2002); they represent different

climatic regimes while approximately covering all land

areas except Antarctica. Since Australia has an area

similar to the other subcontinental areas, it is counted

as either a continental or subcontinental region de-

pending on the analysis.

The natural variability of linear trends in surface

temperature (both SAT and SST) is calculated from the

preindustrial control runs which were produced by

CMIP5 (Taylor et al. 2012). A total of about 12 000

(8800) years of preindustrial control simulations from

models in Table 2 are used to estimate the natural var-

iability of trends in SAT (SST). The climate drift of

control simulations at each grid box is removed sepa-

rately for each model. The control run and other forced

simulation data from the model grids are at a higher

horizontal resolution than the observed datasets and

have been averaged onto the observed 58 grid for the

analysis. We have about 800 (500) realizations of esti-

mated linear trends of SAT (SST) for the 27-yr period.

The SAT and SST trends from the control runs are ap-

proximately normally distributed and the standard de-

viation (s) of this distribution is used as the measure of

the natural variability of linear trends. In each region or

grid box, we apply a one-sided local significance test to

determine whether the observed SAT or SST trend

(OBS) is significantly different from zero at the 5%

significance level (jOBSj $ 11.96s).

The range of fractions of grid boxes with significant

trends that could occur due to internal variability is

determined by applying the field significance test of

Livezey and Chen (1983). On average, in a stationary

climate, only 5% of the grid boxes are expected to show

warming trends significant at the 95% confidence level

due to random variability alone. As there is large spatial

coherence of low-frequency variations of SST (also

FIG. 1. The standard deviations of annual mean SAT and SST in (a) observations and (b) the

CMIP5 multimodel control simulations. Plus/minus symbols mark individual grid boxes with

ratio of simulated and observed variance exceeding the 5% significance level in the F test.
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SAT), a much larger fraction of significant warming

trend might occur by chance. For 27-yr trends, we con-

sider the linear trends at each grid box from the control

simulation and determine the fraction of grid boxes that

show locally significant trends. This is repeated 800 (500)

times to determine the distribution of grid box fractions

with significant land (ocean) change that could occur

due to internal climate variations.

To determine the possible roles of external anthro-

pogenic and natural radiative forcings, and boundary

forcings in the observed 1979–2005 SAT and SST trends,

the modeled trends of SAT or SST are calculated from

the following CMIP5 simulations for 1979–2005, as lis-

ted in Table 2: 1) forced by observed atmospheric com-

position changes (reflecting both anthropogenic and

natural sources, and termedHistorical orHIST in Table 2),

FIG. 2. Trends in annual mean surface temperature (8Cdecade21) during 1979–2005, including (a) observed trends from HadCRUT4,

(b) multimodel ensemble-mean trends in AMIP, (c) Historical, (d) HistoricalGHG, and (e) HistoricalNAT simulations, and difference of

trends (f) betweenAMIP andobservations, and between (g)Historical and (h)HistoricalGHGand observations. Regions used in the analysis

are marked in (f). Plus (minus) symbols mark individual grid boxes with significant warming/cooling trends in (a), and significantly larger

(smaller) forced trends than observations in (f)–(h). Above each map is the fraction of grid boxes over global land and ocean with significant

warming trends [in (a)] or significantly different trends [in (f)–(h)] and, in parentheses, the possible range of fractions that could occur due to

internal variability. In (b), SST is a model input so differences between models and observations are not evaluated over oceans.
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2) greenhouse gas forcing only (HistoricalGHG or GHG),

3) natural climatic forcing only including volcanic eruptions

and changes in the solar output (HistoricalNAT or NAT),

and 4) AMIP-like runs forced with atmospheric radiative

forcing and using observed SST and sea ice instead of the

coupled ocean model (AMIP column in Table 2) .

In the original AMIP experiment (Gates et al. 1999),

atmospheric model integrations were driven by ob-

served time-varying SSTs and sea ice as the lower

boundary condition, and did not take into account the

direct effects of atmospheric radiative forcing upon

SAT. According to Deser and Phillips (2009), the new

AMIP approach in CMIP5 does not ‘‘double count’’

the atmospheric radiative forcing because only the di-

rect effect is specified, whereas the indirect effect is

included in the prescribed SST forcing. Compo and

Sardeshmukh (2009) found that the recent warming

over land has occurred as a response to oceanic

warming through enhanced RLDS due to increased

atmospheric moisture rather than as a direct response

to increasing greenhouse gases.

The cumulative significance of these 27-yr linear

trends of annual mean surface temperature and other

atmospheric fields in each region and grid box is assessed

using the same method as for the observations. We also

conduct a two-side consistency test to determine

whether the difference between the observed and any

simulated trend is significantly different from zero at the

90% confidence level at each region and grid box

{jdifferencej $ 1.64s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[11 1/(Ne)]

p
}, where Ne is the

number of ensemble members of the model signal in the

last row of Table 2), and a field significance test to obtain

the 95th percentile of the distribution of fractions of grid

boxes that give significantly different trends due to in-

ternal variability.

Finally, a linear regression model is constructed to

compare the observed and simulated temperature changes

in each spatial region by expressing the observation (Y) as

a sum of two scaled response signals (X) plus residual in-

ternal variability (e):

Y(t)5 bantXant(t)1bnatXnat(t)1 e(t) , (1)

where X 5 (Xant, Xnat) are estimated responses to ex-

ternal anthropogenic forcings and natural forcings, and

scaling factors (bant, bnat) are best estimated signal

strengths that adjust the amplitudes of those two signals

(Mardia et al. 1979; Hegerl et al. 2007; Bindoff et al.

2014). The climate response to external anthropogenic

forcings (termed HistoricalANTH, including well-

mixed greenhouse gas forcing and other components

of anthropogenic forcing, such as the effect of sulfate

aerosols including their indirect effect on the cloud al-

bedo, tropospheric and stratospheric ozone, and land

use changes) is represented by the difference between

the ensemble mean of Historical and HistoricalNAT

experiments. Note that we assume the linearity of forced

signals here. Detection of an anthropogenic signal is

claimed at the 5% significance level if the 95% confi-

dence interval of its signal strength (b value) does not

TABLE 3. Results of field significance tests. The two right columns show the percent of grid boxes over global ocean or land locally

significant at the stated confidence level (95% one-sided or 90% two-sided, below) based on the specified condition in the left columns.

The number in parentheses is the result of a field significance test to determine the largest value of this fraction due to natural climate

variability. It represents at least the 95% significance level for the field significance of the fraction of grid boxes. (a) Percent of grid boxes

over the global ocean and landwith observed linear warming trends locally significant at the 95% confidence level. (b)As in (a), but for the

fraction of grid boxeswhere the observed trend is significantly different from the ensemblemean forced trend inHistorical,HistoricalGHG,

HistoricalNAT and AMIP simulations, using a two-sided test at the 90% confidence level. (c),(d) As in (b), but for the fraction of grid

boxes where the forced trend of SAT and downward long wave radiations (RLDS) in AMIP simulation is significantly different from that

in Historical and HistoricalGHG simulations. (e) Same as in (c), but for the fraction of grid boxes where the forced trends of SAT and

RLDS in Historical simulation are significantly different from that in HistoricalGHG simulation. Note that in (b) and (c), no ocean test is

performed for any comparison involving AMIP data.

(a) Grid boxes with observed trend significantly different from natural variations Ocean Land

35.8% (12.6%) 34.6% (12.6%)

(b) Grid boxes with observed trend significantly different from trend from simulation

forced by stated factors

HIST 11.0% (19.7%) 5.0% (20.6%)

GHG 10.2% (19.7%) 5.0% (20.6%)

NAT 30.9% (19.7%) 26.5% (20.6%)

AMIP 2.8% (20.6%)

(c) Grid boxes with AMIP SAT trend significantly different from trend from

coupled simulation

HIST 4.9% (20.6%)

GHG 5.8% (20.6%)

(d) Grid boxes with AMIP RLDS trend significantly different from trend from

coupled simulation

HIST 2.6% (19.5%) 0.5% (21.2%)

GHG 3.5% (19.5%) 1.1% (21.2%)

(e) Grid boxes with SAT or RLDS trend significantly different between runs

with HIST or GHG forcing

SAT 0.0% (19.7%) 0.0% (20.6%)

RLDS 0.0% (19.5%) 0.0% (21.2%)
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cross the zero line. An interval that includes b 5 1

suggests that the signal is consistent with the observed

temperature change. The statistical significance of re-

gression coefficients and correlation coefficients in the

analyses is assessed using the t statistic. Because of au-

tocorrelations in the SST or SAT fields, the effective

sample sizes in the t tests are estimated using the re-

lationship outlined inDavis (1976). The effective sample

sizes range from 13 to 20 over ocean domains and from

12 to 21 over land regions.

3. Results

a. Comparison of observed and simulated variability

The observed variability of the detrended surface

temperatures on interannual and longer time scales is

compared with the variability in the control simulations

to evaluate the quality of the simulations of natural in-

ternal climate variability. Simple linear detrending is used

to attempt to remove some of the possible anthropogenic

signal in the observed temperatures. The results are in-

sensitive to the order of the polynomial trend removed

from the indices. The variances of the detrended ob-

served and control simulated temperatures of eachmodel

are calculated at each of the grid boxes with sufficient

observational data. An F test is utilized to determine

whether the multimodel mean of simulated variance in

control runs is significantly larger or smaller than the

corresponding observed variance at each grid box at the

5% significance level.

Figure 1 shows the geographical distribution of ob-

served (1979–2005, detrended) and CMIP5 model con-

trol run standard deviations of grid box annual averaged

SAT (over land) and SST (over oceans). The general

features of observed variability are well simulated

through the multimodel ensemble-mean simulations.

The spatial correlation coefficient between the observed

and modeled standard deviation fields is 0.77, indicating

FIG. 3. Time series of annual mean observed (black lines) and ensemble-mean simulated SST anomalies averaged over the 14 ocean

domains during 1979–2005. Simulated SST changes are from Historical (orange lines), HistoricalGHG (red lines), and HistoricalNAT

(blue lines) experiments. SST changes from other anthropogenic forcing (HistoricalOANTH, green lines), represented by the difference

of Historical minus the sum of HistoricalGHG and HistoricalNAT experiments, are plotted in green lines.
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a good agreement between models and observations in

the overall spatial structure of the variability.

In addition, the CMIP5 model has comparable or

larger variability than observed over land, but sub-

stantially larger (smaller) variability than observed in

the North Atlantic and Pacific (eastern tropical Indian

Ocean and western tropical Pacific, eastern tropical

Pacific, and high-latitude South Ocean). Knutson et al.

(2013) also find that CMIP5 models simulate larger low-

frequency internal variability than the observed esti-

mate in high-latitude oceanic and continental regions of

the Northern Hemisphere, but smaller internal vari-

ability over much of the remaining ocean regions and

Southern Hemisphere. When averaged over each of the

land and ocean regions in Table 1, the variability in the

CMIP5 models is similar to or slightly larger than that

observed (not shown). Therefore, the significance of

detection and attribution results presented in this study

is unlikely to be overestimated except over three ocean

domains (SPO, SAO, and SIO).

b. Detection of observational warming over land and
ocean at various scales

Figure 2a illustrates the spatial patterns of linear SAT

trends for 1979–2005 in HadCRUT4, and contains sim-

ilar features as in the IPCC Fourth Assessment Report

(Trenberth et al. 2007, their Fig. 3.9). About one-third of

the individual grid boxes (34.6% over land and 35.8%

over ocean) with sufficient observational data show

significant 27-yr warming trends at the 5% significance

level, which is consistent with that in Knutson et al.

(2013) but less than the fraction of significant 30-yr

warming trend over the globe (about 45%) during 1973–

2002 inKaroly andWu (2005) and during 1971–2000 inWu

and Karoly (2007). Figure 2a shows more warming over

land than ocean and especially at higher NH latitudes, but

weak warming or cooling is seen in a few regions, espe-

cially the tropical eastern Pacific and midlatitudes of the

SH oceans. These fractions of warming trends are much

too large to be explained as a chance occurrence due to

internal climate variations such as El Niño and the Pacific
decadal oscillation (PDO;Mantua et al. 1997) (Fig. 2a and

Table 3).

Observed SSTs over the globe, NH, SH, tropics,

tropical Indian Ocean, tropical western Pacific and At-

lantic, North and South Pacific, and North Atlantic have

all increased in 1979–2005, showing significant warming

trends at the 5% significance level (Figs. 3 and 4), but the

other four basins (the tropical central and eastern Pacific

and the South Indian and Atlantic Oceans) have weak

warming with some areas of cooling. The globe, entire

NH and SH, five continental regions, and 15 of 21 sub-

continental regions show significant warming trends at

the 5% significance level (Figs. 5 and 6), and three other

regions (Alaska, South Asia, and central North Amer-

ica) show significant warming trends at the 10% signif-

icance level. A field significance test is performed for the

21 Giorgi regions and 10 ocean basins in Table 1. At the

5% significance level, only 1 of 21 Giorgi regions and 1

of 10 of ocean regions show significant warming trend

patterns. Therefore, the fact that 15 of 21 subcontinental

FIG. 4. Observed and simulated SST linear trends from 1979 to

2005 (8Cdecade21) averaged over 14 ocean domains. Each error

bar at the left of an observed trend is the standard deviation (s) of

500 samples of 27-yr SST from 8000 years of CMIP5 control runs

and represents the natural variability of the observed or modeled

trend of SST averaged over the spatial domain. Observed trends

significant at the 5% level are unmarked; significant and in-

significant at the 10% level are marked with one and two stars,

respectively. A forced trend significantly different from the cor-

responding observed trend at the 90% confidence level is marked

with the diamond symbol.
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FIG. 5. As in Fig. 3, but for SAT time series in a range of land areas. Simulated SAT changes from the AMIP experiment

are plotted in gray color.
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regions and 6 of 10 basin oceans show significant ob-

served linear warming trends at the 5% significance

level cannot be explained by internal variability.

c. Attribution of SST trend

The multimodel ensemble mean is able to reproduce

many features of the evolution of temperature change in

most regions when models include anthropogenic and

natural forcings. For example, the cooling of global,

hemispheric, and basin-scale SST in HadSST3 is clearly

seen after volcanic eruptions, particularly the eruption

of Mt. Pinatubo in June 1991 (Fig. 3). Figure 3 also

shows that that there is a clear separation between the

ensembles of simulations that include only natural

forcings and those that contain anthropogenic forcing.

For each domain, the GHG forcing captures most of the

warming SST trend, andNAT forcing also contributes to

a part of the warming SST trend, but other anthropo-

genic forcing results in a cooling SST trend (Figs. 3 and

4). A consistency test indicates that the simulated trends

in Historical and HistoricalGHG are consistent with

corresponding observed trends at each of the above 10

regions with significant observed trends, but not for the

HistoricalNAT at the 10% significance level. Results

using scaling factors in Fig. 7 demonstrate that a signifi-

cant anthropogenic signal is robustly detectable in 12

domains and consistent with observed SST changes in 11

of 12 domains. Meanwhile, a significant NAT signal is

also detectable in seven domains (GL, NH, TIO, TWP,

TAO, SPO, and NAO), indicating that natural external

forcing including volcanic eruptions and changes in the

solar output slightly contributes to SST warming trends

in these seven domains. The linear trend in natural

forcing appears positive over the period 1979–2005

(Fig. 8.19 in Myhre et al. 2013). Overall, the above re-

sults suggest that increases in well-mixed greenhouse

gases are the main driver of significant increases of SST

at global, hemispheric, and tropical scales, and in six

basins (TIO, TWP, TAO, NPO, SPO, and NAO) in the

period of 1979–2005.

Further evidence is provided by the comparison be-

tween spatial patterns of observed (HadSST3) and

simulated SST changes. The SST trends in both His-

torical andHistoricalGHG simulations (Figs. 2c,d) show

a pattern of spatially near-uniform warming similar to

that observed, especially over the tropical IndianOcean,

tropical west Pacific, and tropical Atlantic. Difference

patterns resemble a PDO-like structure (Mantua et al.

1997) or interdecadal Pacific oscillation (IPO)-like

structure (Power et al. 1999) in the Pacific (cooling in the

North Pacific and South Pacific and warming in the

eastern tropical Pacific) and negative AMO-like pattern

in the North Atlantic (Enfield et al. 2001) (Figs. 2g,h).

FIG. 6. As in Fig. 4, but for SAT linear trends (including AMIP

trends, not evaluated over oceans in Fig. 4) over a range of land

areas.
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Larger decadal and multidecadal variations are seen in

the observations than in the ensemble mean model

simulations because the ensemble averaging process

filters out much of the natural internal variability sim-

ulated by individual models. Despite the lack of de-

tectable trends over many grid boxes, the observed

trends are at least consistent with the historical runs in

the North Atlantic, which have a very wide 5th to 95th

percentile range of trends due to the large simulated in-

ternal variability. However, only about 11%of grid boxes

over ocean where the observed trends are not consistent

with the multimodel averaged trends at the 10% sig-

nificance level for both Historical and HistoricalGHG

simulations can be explained by internal climate varia-

tions (Table 3). About 31% of ocean grid boxes show

significantly different observed and forced trends in the

HistoricalNAT simulation, indicating that observed

changes are much too large to be explained as a chance

occurrence due to internal climate variations or external

natural forcing.

Together with globally averaged SST results in Figs. 3

and 4, the global field consistency test in Figs. 2g and 2h

strongly supports a human-induced warming of the

world’s ocean during 1979–2005. Gleckler et al. (2012)

and Pierce et al. (2012) find an anthropogenic increase in

global ocean heat content in the latter half of the

twentieth century, and we here provide compelling ev-

idence of human influence at the global and tropical

basin scales of the near-surface ocean warming observed

since 1979.

Most CMIP5 historical runs are started nominally in

1850. All models use the same greenhouse gas forcing,

but may handle other forcings differently, and (except

for AMIP runs) each model generates different ocean

states starting with its control run, so ENSO and other

variations occur in different years in each model except

for AMIP runs. Although 1979 reflects the beginning of

the peak warming period, observed hemispheric aver-

aged SST warming accelerated around the middle

1970s and 1960s in the Northern Hemisphere and

Southern Hemisphere respectively (see Fig. 3.4 in

Trenberth et al. 2007), and many model historical runs

also show accelerated warming before 1979 (not

shown). To ensure that the relatively short 1979–2005

analysis period does not give artificial results, we repeat

analyses of trends depicted in Figs. 2 and 4 using ob-

served and forced SST trends for 1975–2005, 1970–

2005, and 1965–2005 (not shown), and find little dif-

ference in results compared to 1979–2005. All results

support an anthropogenic-induced warming of the

world’s ocean.

To improve the sample size, all ensembles of each

model are used in the above calculations. However, the

ensemble mean would smooth out interannual vari-

ability. As discussed above, peak warming periods

differ in different ensemble members. We recalculate

forced SST trends using only one member of each

model and find that the main results do not change

noticeably.

d. Attribution of land warming

Figure 2 demonstrates that AMIP, Historical, and

HistoricalGHG simulations are realistic in capturing the

observed overall land warming. The fraction of the grid

FIG. 7. (left) Estimated scaling factors indicating thematch between observed and simulated SST trends when the

external anthropogenic forcing (ANTH) and natural forcing (NAT) signals are taken into account in the linear

regression model, and (right) estimated contributions of ANTH and NAT forcing components to observed tem-

perature trends (8Cdecade21) over each domain, with their 2.5%–97.5% confidence intervals indicated for all 14

ocean domains. Red (blue) is for the ANTH (NAT) signal.
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boxes where the observed trend is not consistent with

the ensemble mean multimodel forced trend ranges

from 2% to 6% in these simulations (Fig. 2), grid boxes

where the simulated trend from the AMIP runs is not

consistentwith that in theHistorical orHistoricalGHGrun

are less than 6%, and grid boxes where the simulated trend

is not consistent between Historical and HistoricalGHG

runs are near 0%. All these fractions are much less than

the 95th percentile of the distribution of fractions of grid

boxes that give significantly different trends due to in-

ternal variability (about 21%). This suggests that ob-

served trends over land are consistent with the ensemble

mean multimodel averaged response to either all his-

torical, or greenhouse gas only, or boundary forcings,

and that forced trends over land in these three simula-

tions are consistent with each another. Figure 2e in-

dicates that the external natural forcing might have

contributed to a small part of land warming due to

a positive linear trend in natural forcing over the period

of 1979–2005 (Myhre et al. 2013).

Observed and simulated annual mean time series of

SAT at various spatial scales are shown in Fig. 5. In

general, the observed SAT changes are better repro-

duced in the AMIP experiment than in coupled exper-

iments in all regions, as expected because prescribed

SST in AMIP runs causes interannual variations such as

ENSO to occur in the correct years and regions. At the

global, hemispheric, and continental scales (except

Australia), observed SAT changes are correlated about

0.8–0.9 with the simulated changes in the AMIP, and in

the Historical or HistoricalGHG experiments correla-

tions are about 0.6–0.8. In 14 subcontinental regions

with significant warming trends at the 5% significance

level (except CNA), correlations range from 0.6 to 0.9 in

theAMIP, and 0.4 to 0.8 in Historical or HistoricalGHG

experiments. Over 14 domains including GL, NH, SA,

AF, MED, WAF, EAF, NAF, CAS, TIB, GRL, SEA,

and SAS, observed SAT is also correlated with that in

HistoricalNAT with correlations above 0.4–0.6. How-

ever, at the 5% significance level, the simulated SAT

FIG. 8. As in Fig. 7, but for SAT trends over a range of land areas.
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trend is consistent with the corresponding observed

trend on each of the global and hemispheric scales, and

in 5 of 6 continental regions and all 20 subcontinental

regions in the AMIP, Historical, and HistoricalGHG

simulations, but not in the HistoricalNAT simulation

(Fig. 6).

At the 5% significance level, an anthropogenic signal

is clearly detectable and significantly consistent with

observed SAT changes not only in the global and

hemispheric, and 5 of 6 continental scales, but also over

14 of 15 subcontinental regions where observations

show significant warming trends at the 5% level (Fig. 8).

At the 5% significance level, an anthropogenic signal is

also clearly detectable over Alaska and southern South

America. Note that the warming trend is statistically

significant over Alaska, but insignificant over southern

FIG. 9. Simulated trends in annual mean downward longwave radiation (Wm22 decade21)

over 1979–2005 in multimodel averaged (a) AMIP, (b) Historical, and (c) Historical-GHG

experiments. Plus (minus) symbols mark individual grid boxes where trends in (b) or (c) are

significantly larger (smaller) than that in (a) at the 10% significance level using a two-sided test.

Above (b) and (c) are percentages of grid boxes (over land or ocean, respectively) with sig-

nificantly different trends than in (a), and, in parentheses, the possible range of fractions that

could occur due to internal variability.
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South America at the 10% level. Figure 8 shows that

the NAT signal can be robustly detected over 15 do-

mains, including GL, NH, NA, AS, AF, MED, WAF,

EAF, NAF, EAS, CAS, TIB, GRL, SAS, and CAN, at

the 5% significance level. Overall, the human-induced

GHG increase accounts for most warming observed

over 15 of 21 subcontinental regions between 1979 and

2005.

We have shown that both uncoupled (AMIP) and

coupled (Historical and HistoricalGHG) simulations

are able to capture both the global pattern and magni-

tudes of the observed trends over land at various spatial

scales. In the coupled simulations, the global and trop-

ical oceanic warming pattern is well represented, and

nearly all observed ocean and basin-scale warming can

be accounted for by prescribed observed historical

forcing or greenhouse gas–only forcing. In all three

groups of simulations, the warmed ocean moistens and

warms the air over land and increases RLDS at the

surface through the mechanism of hydrodynamic–

radiative teleconnections (Compo and Sardeshmukh

2009). At the 5% significance level, the simulated trends

of RLDS, which play a dominant role in surface warm-

ing, are consistent across three groups of simulations

(Fig. 9). In fact, the fraction of the grid boxes over land

and ocean with significantly different trends in surface

RLDS between any two groups of AMIP, Historical,

and HistoricalGHG runs are less than 1% and 4% re-

spectively, which can be explained by internal climate

variations. Fully coupled GCMs forced by prescribed

observational radiative forcings are able to successfully

capture trend patterns of the global, tropical, and

northern midlatitude SST, and thus the global mean as

well as most subcontinental aspects of land warming.

Therefore, at the global, hemispheric, and 5 of 6 con-

tinental scales, and in 15 of 21 subcontinental regions,

increasing greenhouse gas concentrations are the ulti-

mate source of land warming at the 5% significance

level.

4. Conclusions

Our study establishes the attribution of SST and SAT

warming from 1979 to 2005 at a variety of spatial scales

and in ocean basins and subcontinental land regions. It is

very likely (at the 95% confidence level) that the global

pattern of SST warming and the warming trend of spa-

tially averaged SST over the world, Northern and

Southern Hemispheres, global, hemispheric, the entire

tropics and six ocean basins (tropical Indian, western

Pacific andAtlantic Oceans, midlatitudeNorthAtlantic,

and South and North Pacific) is attributed to anthropo-

genic forcing. Our attribution results indicate that the

global, hemispheric, and basin ocean warming is well

reproduced since 1979 in CMIP5 multimodel ensemble

mean historical runs including those with all forcing

factors or greenhouse gas forcing only. Such correct

representation of SST changes is important for repre-

senting CMIP5 landwarming. The spatial patterns of the

CMIP3 andCMIP5 coupledmultimodel ensemblemean

SAT trends over land were mainly influenced by the

pattern of the global SST warming trend over the same

period through a hydrodynamic–radiative teleconnec-

tion mechanism suggested by Compo and Sardeshmukh

(2009) (see the appendix).

With great consistency and agreement across obser-

vational datasets and simulations of the climate system

with natural and anthropogenic forcings, or boundary

forcings, our results suggest that anthropogenic forcing

has very likely (at the 95% confidence level) contributed

to observed SST warming and land warming in 15 sub-

continental regions (northern South America, Mexico,

Mediterranean, northern Europe, western Africa, east-

ern Africa, southern Africa, northern Africa, Southeast

Asia, East Asia, central Asia, the Tibetan Plateau,

Greenland, Siberia, and western North America). Our

study is complementary to previous attribution studies

that focus on land temperature and SST trends over 50-yr

and longer periods (Zhang et al. 2006; Min and Hense

TABLE A1. CMIP3 model runs downloaded for this appendix

from http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php. The top head-

ings identify data types and grids of monthly average surface air

temperature (SAT) and net downward longwave radiation (RLDS).

Each line lists the number of initial condition ensemble members for

historical atmospheric-only runs with prescribed SST and sea ice

(AMIP), and historical runs with all anthropogenic and natural

forcings (20C3m). All runs cover 1980–99. The bottom row (SUM)

shows the number of ensemble members.

Models

SAT RLDS

AMIP 20C3M AMIP 20C3M

CCM3 16

CCSM3 1 5 1 5

CNRM-CM3 1 1 1 1

FGOALS1 1 3 1 3

GFDL-CM2 1 3 1 3

GISS1 4 9 9

Had-GEM1 2 2

INMCM3 1 1 1 1

IPSL-CM4 4 2 4 2

MIROC3-LR 1 1

MIROC3-MR 3 3 3 3

MIROC3-HR 1 1

MPI-ECHAM5 3 4 3 4

MRI-CGCM2 1 4 1 4

NCAR CAM3.5 1

NCAR-PCML 4 4

SUM 38 42 17 42
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2006; Jones et al. 2008; Wu 2010; Christidis et al. 2010,

2012; Knutson et al. 2013), and thereby strengthens ex-

isting detection and attribution evidence. Previous stud-

ies find that grid point trends since 1950 are well

represented by the CMIP5 climate models (Bhend and

Whetton 2013; Knutson et al. 2013; van Oldenborgh et al.

2013). Our analyses suggest that grid point trends and

most subcontinental trends during 1979–2005 are also

well represented by the CMIP5 climatemodels. However,

the duration of 1979–2005 is relatively short. Given that

numerous CMIP5 analyses have documented models’ se-

vere shortfalls, our analysis might be overconfident about

FIG. A1. Trends in annual mean surface temperature (8C decade21) during 1980–99, including observed trends from (a) HadCRUT4,

(b) multimodel ensemble-mean trends in four group simulations including CMIP3 AMIP (labeled AMIP3), (c) CMIP3 20C3M (la-

beled HIST3), (d) CMIP5 AMIP (labeled AMIP5), (e) CMIP5 Historical (labeled HIST5) experiments, (f)–(i) the differences of

trends between observations and each simulation, and (j)–(o) differences between pairs of simulations. Plus (minus) symbols mark

individual grid boxes with significantly larger (smaller) forced trends than observations in (f)–(i), or mark individual grid boxes with

significantly different trends between simulations. At the top of panels (f)–(o) is the fraction of grid boxes (over land or ocean,

respectively) with significantly different trends and, in parentheses, the possible range of fractions that could occur due to internal

variability.
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CMIP5 model skills in simulating observed temperature

trends based only on a 27-yr period.
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APPENDIX

Comparison of Forced Trends from CMIP3 and
CMIP5 Experiments during 1980–99

The CMIP5 AMIP-like experiments use forcing in-

cluding both observed SST and sea ice and atmospheric

radiative forcing for 1979–2008 (Taylor et al. 2012),

while CMIP3 AMIP experiments use forcing including

observed SST and sea ice only (Gates et al. 1999). Here

FIG. A1. (Continued)
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we calculate observed landwarming trends inCRUTEM4

and the corresponding forced trends from CMIP3

AMIP and the twentieth century historical simulations

(20C3M) experiments of 16 models (Table A1) and from

CMIP5 AMIP and Historical experiments (Table 2) over

the period of 1980–99. Since the CMIP3 AMIP simula-

tions are run from 1980 to 1999, we focus our comparison

on this 20-yr period and use the same methods from

section 2 to analyze model data. Natural variability of

linear trends in SAT and RLDS is calculated from the

CMIP5 preindustrial control runs.

Figure A1 shows the land warming during 1981–99 for

observations and four group simulations, and Fig. A2

displays the increase of RLDS among four group ex-

periments. We find that all four group simulations are

able to capture the global pattern and magnitudes of the

FIG. A2. Multimodel ensemble-mean trends in annual mean downward longwave radiation (Wm22 decade21) over 1980–99,

including (a) CMIP3 AMIP, (b) CMIP3 HIST3, (c) CMIP5 AMIP, (d) CMIP5 Historical simulations, and (e)–(h) differences

between pairs of simulations. In (e) to (h), plus (minus) symbols mark individual grid boxes where differences are significantly

larger (smaller) at the 10% significance level using a two-sided test. Above those panels are percentages of grid boxes (over land or

ocean, respectively) with significantly different trends, and, in parentheses, the possible range of fractions that could occur due to

internal variability.
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observed trends of SAT since the fractions of the grid

boxes over land with significantly different trends be-

tween observations and each simulation are less than

7.6%, which is much less than the threshold for a sig-

nificantly different pattern. Difference patterns and

magnitudes of land warming between observations and

each simulation are similar (Fig. A1f–i), and differ-

ences between pairs of simulations are also not signif-

icant (Fig. A1j–o). In addition, the four experiment

groups simulate consistent trend patterns in downwel-

ling longwave radiation over land (Figs. A2a–d) and

the difference patterns (Figs. A2e–h; not all model

pairs are shown) are not significant.

The above results demonstrate that the spatial pat-

terns of the CMIP3 or CMIP5 coupled multimodel

ensemble mean SAT trends over land were mainly

influenced by the pattern of the global SST warm-

ing trend over the same period, which is very likely

through a hydrodynamic–radiative teleconnection

mechanism suggested by Compo and Sardeshmukh

(2009). To some degree, results here provide evidence

that the indirect land warming response to radiative

forcing through the SST response is much larger than the

direct land response to radiative forcing in CMIP5

AMIP experiment.
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