
1.  Introduction
Extreme high temperatures have significant societal and ecological implications (e.g., Deb et  al.,  2020; 
Hoag, 2014; Vautard et al., 2020), and their frequency has increased in Northern Hemisphere (NH) midlatitudes 
(Horton et al., 2016; IPCC, 2012). Increased frequency of extreme high temperatures is largely attributable to in-
creases in mean temperature (Huntingford et al., 2013; Rhines & Huybers, 2013). Although significant changes in 
summertime temperature variance have not been observed in the historic record (McKinnon et al., 2016), climate 
model simulations generally indicate greater summertime temperature variance in a warming climate (e.g., Duan 
et al., 2020; Fischer & Schär, 2009; Gregory & Mitchell, 1995; Rowell, 2005). Increased temperature variance 

Abstract  How summertime temperature variability will change with warming has important implications 
for climate adaptation and mitigation. CMIP5 simulations indicate a compound risk of extreme hot 
temperatures in western Europe from both warming and increasing temperature variance. CMIP6 simulations, 
however, indicate only a moderate increase in temperature variance that does not covary with warming. To 
explore this intergenerational discrepancy in CMIP results, we decompose changes in monthly temperature 
variance into those arising from changes in sensitivity to forcing and changes in forcing variance. Across 
models, sensitivity increases with local warming in both CMIP5 and CMIP6 at an average rate of 5.7 ([3.7, 
7.9]; 95% c.i.) × 10−3°C per W m−2 per °C warming. We use a simple model of moist surface energetics to 
explain increased sensitivity as a consequence of greater atmospheric demand (∼70%) and drier soil (∼40%) 
that is partially offset by the Planck feedback (∼−10%). Conversely, forcing variance is stable in CMIP5 but 
decreases with warming in CMIP6 at an average rate of −21 ([−28, −15]; 95% c.i.) W2 m−4 per °C warming. 
We examine scaling relationships with mean cloud fraction and find that mean forcing variance decreases with 
decreasing cloud fraction at twice the rate in CMIP6 than CMIP5. The stability of CMIP6 temperature variance 
is, thus, a consequence of offsetting changes in sensitivity and forcing variance. Further work to determine 
which models and generations of CMIP simulations better represent changes in cloud radiative forcing is 
important for assessing risks associated with increased temperature variance.

Plain Language Summary  CMIP5 models show that, in the Northern Hemisphere midlatitudes, 
summertime temperature variability increases as the surface warms, indicating a compound risk of extreme 
hot months that have important implications for climate adaptation and mitigation. CMIP6 models, however, 
show only a moderate increase in temperature variability that is unrelated to warming. To understand this 
intergenerational discrepancy in CMIP results, we develop a framework to decompose changes in temperature 
variability into contributions from changes in the variability of external forcing and changes in the sensitivity 
of temperature to that forcing. We find that both CMIP5 and CMIP6 models show consistent increases in 
sensitivity as the surface warms, which we demonstrate to arise mainly from warming and drying using a 
simple diagnostic model. Changes in forcing variability, however, differ between CMIP5 and CMIP6. Whereas, 
forcing variability is stable in CMIP5, it decreases substantially with warming in CMIP6 and offsets the effect 
of sensitivity growth. Hence, although midlatitude land surface tends to become more sensitive in all models, 
whether temperature variability will increase with warming remains uncertain and relies on how forcing 
variability changes.
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would further increase the frequency of extreme heat events, highlighting the importance of accurately predicting 
changes in summertime temperature variability.

Global climate model predictions of changes in summertime temperature variability, Δσ2(T), are often high-
ly uncertain, making understanding intermodel differences important. Analyzing monthly temperatures, Chan 
et al. (2020) reported a positive relationship between local warming, 𝐴𝐴 Δ𝑇̄𝑇  , and Δσ2(T) across projections from the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) in NH midlatitudes (also see Fig-
ure 1a). In Europe, Δσ2(T) increases with warming by 0.40 ([0.27, 0.51]; 95% c.i.)°C2 per °C warming (Table 1), 
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Figure 1.  Warming and changes in temperature variance. (a)–(b) Cross-model correlation between 𝐴𝐴 Δ𝑇̄𝑇  and Δσ2(T) for (a) 
CMIP5 and (b) CMIP6. Changes, as indicated by Δ, are the future (2071–2100) minus the historic period (1976–2005). We 
use historical all-forcing experiments for the historical climate and projections under high-emission scenarios for the future 
climate, that is, RCP8.5 for CMIP5 and SSP585 for CMIP6. For each 30-year period, the mean and linear trend are removed 
from each summer month, June-July-August (JJA), such that our calculated variance does not include warming signals or 
changes in seasonal cycles. Dots denote significance at the 95% level. As in Chan et al. (2020), the 23 CMIP5 models used 
are: ACCESS1-0, ACCESS1-3, CCSM4, CESM1-BGC, CESM1-CAM5, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, 
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, HadGEM2-CC, HadGEM2-
ES, IPSL-CM5A-MR, MIROC5, MRI-CGCM3, MRI-ESM1, NorESM1-M, NorESM1-ME, and inmcm4. The 25 CMIP6 
models used are ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, CESM2-WACCM, CMCC-CM2-SR5, E3SM-1-1, 
EC-Earth3, EC-Earth3-Veg, EC-Earth3-Veg-LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-CM4, GFDL-ESM4, 
INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, 
NESM3, NorESM2-LM, and NorESM2-MM. We use 2-m air temperatures (tas) from the r1i1p1/r1i1p1f1 member of each 
CMIP5/CMIP6 model. Model results are each first interpolated to a common 0.5° grid resolution and averaged to 2.5° grid 
resolution. As in Chan et al. (2020), models whose original resolution is lower than 2.5° in either longitude or latitude are 
excluded. (c)–(d) Δσ2(T) (y-axes) versus 𝐴𝐴 Δ𝑇̄𝑇  (x-axes) averaged over (c) Europe and (d) Northern North America. In each 
panel, orange and blue markers show individual CMIP5 and CMIP6 models, respectively. Associated standard-deviation 
uncertainties (horizontal and vertical bars on each marker) are estimated using 2-year block bootstrapping (Chan et al., 2020). 
These error estimates are used as the weight in a York regression (York et al., 2004) to evaluate linear relationships between 
Δσ2(T) and 𝐴𝐴 Δ𝑇̄𝑇  (lines). Associated 95% confidence intervals of the regression (shadings) are estimated by resampling models 
with replacement. More details of the York regression are in the methods section of Chan et al. (2020).
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and the cross-model correlation between 𝐴𝐴 Δ𝑇̄𝑇  and Δσ2(T) is 0.85 (orange markers in Figure 1c). Uncertainties 
are reported as 95% c.i.s if not otherwise specified. Such a positive relationship indicates a compound risk of 
extreme heat events due to both increases in the mean and variance of temperatures in high-emission scenarios 
(Chan et al., 2020).

Evaluation of CMIP6, however, shows essentially no relationship between 𝐴𝐴 Δ𝑇̄𝑇  and Δσ2(T) (Figure 1b). Compared 
with CMIP5, the multimodel mean 𝐴𝐴 Δ𝑇̄𝑇  is, on average, one-third higher in CMIP6, but Δσ2(T) is only half of that 
in CMIP5 (also see Figure S1 in Supporting Information S1). Across CMIP6 models, Δσ2(T) slightly decreases 
with 𝐴𝐴 Δ𝑇̄𝑇  at a rate of −0.04 ([−0.13, 0.09])°C2 per °C warming in Europe, and correlation drops to only −0.01 
(blue markers in Figure 1c). A positive relationship between 𝐴𝐴 Δ𝑇̄𝑇  and Δσ2(T) also disappears in CMIP6 over 
Northern North America (Figure 1d).

This intergenerational difference in changes in temperature variance would have distinct implications for assess-
ing risks associated with extreme high-temperature events in a warming climate. It is, therefore, important to 
understand why the two CMIP generations differ. Moreover, understanding differences among models and model 
generations provides insight into the mechanisms of summertime temperature variability and have implications 
for improving climate models.

We inquire into the processes responsible for distinct projections of Δσ2(T) between CMIP5 and CMIP6, of which 
there are two broad categories: land-surface coupling involving evapotranspiration (Duan et al., 2020; Senevi-
ratne et al., 2010; Vargas Zeppetello & Battisti, 2020), and atmospheric processes involving clouds (Lenderink 
et  al.,  2007), water-vapor feedback (Held & Soden, 2000; Philipona et  al.,  2005), and large-scale circulation 
(Holmes et al., 2016). Recently, Vargas Zeppetello et al. (2020) developed a simple diagnostic model, here re-
ferred to as VZ20, to understand the origin of monthly temperature variance in NH mid-latitudes. The VZ20 mod-
el captures spatial features of multimodel mean Δσ2(T) that are attributable to land-surface coupling associated 
with increases in atmospheric water vapor deficit and attendant changes in evapotranspiration (Vargas Zeppetello 
& Battisti, 2020). On account of the complexity of full global climate models and the diversity of land-surface 
representations, such a simple diagnostic framework is important for understanding differences across models. 
The degree to which VZ20 and land-surface coupling explain inter-model and inter-generational differences in 
Δσ2(T), however, has not previously been reported.

In this study, we develop a framework that decomposes changes in temperature variance, Δσ2(T), into contribu-
tions from changes in forcing variance, Δσ2(F), and changes in temperature sensitivity to that forcing, 𝐴𝐴 Δ

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 . Such 

a decomposition can indicate the processes responsible for divergent temperature variance predictions and pro-
vide insights for improving future model generations and projections. We show (Section 2) that both CMIP5 and 
CMIP6 models have consistent sensitivity growth with local warming. However, unlike CMIP5, which has stable 
forcing variance, CMIP6 models have substantially decreased forcing variance, which cancels sensitivity growth 
and stabilizes temperature variability. We show that a revised version of the VZ20 model explains the different 
projections of Δσ2(T) across CMIP models (Section 3) and then use it to diagnose the specific channels through 
which sensitivity increases. We also show (Section 4) that clouds are partially responsible for distinct predictions 
of forcing variance before discussing and concluding (Section 5).

2.  Decomposing Changes in Temperature Variance
To better understand similarities and differences between the two generations of CMIP models, we first decom-
pose each temperature anomaly into the anomaly of radiative forcing at the land surface and the sensitivity of 
surface air temperature to that forcing anomaly,

𝑇𝑇
′
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹

′
,� (1)

where, T′ denotes monthly temperature anomalies relative to a 30-year monthly climatology and F′ denotes forcing 
anomalies. Forcing comprises net shortwave radiation, Sn, and downward longwave radiation, L↓. Anomalies 
are measured at each 2.5° grid box during JJA after removing respective means and 30-year trends in indi-
vidual months. Compared with radiative forcing, advective processes have only a weak influence on monthly 
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summertime temperatures over noncoastal continents (Holmes et al., 2016; 
Vargas Zeppetello et al., 2022). For example, the month-to-month variance 
of the residual between radiative forcing, F, and associated response, R, is 
less than 10% of the variance in F. R comprises upward longwave, latent, and 
sensible heat fluxes, and residuals are computed between time series of F and 
R from individual continental grid boxes for each model. We, therefore, focus 
on net solar and downward longwave radiation in F.

Taking the variance of both sides of Equation 1 gives,

𝜎𝜎
2(𝑇𝑇 ) = 𝑆𝑆𝑆𝑆

2(𝐹𝐹 ),� (2)

where, σ2 denotes the variance of respective monthly quantities. S is the 
square of the sensitivity of temperature to forcing, which we calculate using 
the ratio of the variance of temperature to forcing,

𝑆𝑆 =
𝜎𝜎
2(𝑇𝑇 )

𝜎𝜎2(𝐹𝐹 )
.� (3)

A complementary means of estimating sensitivity is to fit for a slope be-
tween temperature and forcing anomalies. Ordinary least squares, however, 
would suffer from regression dilution (Fuller, 2009), on account of noise in 
forcing estimates, for example, from neglecting advective processes (Holmes 
et al., 2016). One way to account for regression dilution is total least square 
(TLS) regression (Markovsky & Van Huffel,  2007), which minimizes the 
sum of distance perpendicular to the fitted slope. Because forcing and tem-

perature have different units, it is natural to standardize both variables before TLS. The solution to this normal-
ized TLS is one because temperature and forcing anomalies are positively correlated. After inverse normalization, 
the TLS solution is identical to Equation 3.

To decompose changes in temperature variance into contributions from changing sensitivity and changing forcing 
variance, we take the difference of Equation 2 between the future (2071–2100) and historic (1976–2005) periods,

Δ𝜎𝜎
2
(𝑇𝑇 ) = 𝜎𝜎

2

ℎ
(𝐹𝐹 )Δ𝑆𝑆 + 𝑆𝑆ℎΔ𝜎𝜎

2
(𝐹𝐹 ) + 𝑂𝑂

(

Δ
2
)

,� (4)

where, a subscript h denotes historical values that we evaluate over 1976–2005. The three terms on the right-
hand-side of Equation 4 denote respective contributions from changing sensitivity, changing forcing variance, 
and higher-order interactions, discussed below.

Applying Equation  4 to CMIP outputs, we find that sensitivity-induced changes in temperature variance, 
𝐴𝐴 𝐴𝐴

2

ℎ
(𝐹𝐹 )Δ𝑆𝑆 , increases with local warming in NH midlatitudes for both CMIP generations (Figures 2a and 2b). In 

Europe, 𝐴𝐴 𝐴𝐴
2

ℎ
(𝐹𝐹 )Δ𝑆𝑆 increases with local warming at rates of 0.43 ([0.36, 0.51]) and 0.35 ([0.21, 0.50])°C2 per °C 

warming for CMIP5 and CMIP6, respectively (Figure 2a). Positive relationships are also evident in Northern 
North America and are consistent between CMIP generations (Figure 2b). Examining only sensitivity change 
confirms that changes in sensitivity, rather than intermodel differences in historic forcing variance, dominate 

𝐴𝐴 𝐴𝐴
2

ℎ
(𝐹𝐹 )Δ𝑆𝑆 (small panels in Figures 2a and 2b). These results show that, in both CMIP generations, land surface 

temperature tends to be more sensitive to forcing as it warms.

On the other hand, forcing-induced changes in temperature variance, ShΔσ2(F), are distinct between CMIP5 and 
CMIP6 (Figures 2c and 2d). In Europe, ShΔσ2(F) decreases with warming at a rate of −0.03 ([−0.10, 0.05])°C2 
per °C warming across CMIP5 models but −0.18 ([−0.30, −0.11])°C2 per °C warming across CMIP6 models 
(Figure 2c). Decreases in the European forcing variance range beyond −80 W2 m−4 in six of the CMIP6 models, 
or more than twice the largest decrease, ∼−40 W2 m−4, in the CMIP5 ensemble. Similar discrepancies in changes 
of forcing variance are also evident in Northern North America (Figure 2d). As a result, a decrease in the vari-
ance of radiative forcing with warming in CMIP6 models cancels out the rise in sensitivity to give near constant 
temperature variance.

CMIP5 CMIP6

R York (°C2 per °C) r York (°C2 per °C)

EU 0.85 0.40 [0.27, 0.51] −0.01 −0.04 [−0.13, 0.09]

NNA 0.61 0.13 [0.04, 0.26] −0.36 −0.09 [−0.17, −0.00]

Only changing sensitivity—𝐴𝐴 𝐴𝐴
2

ℎ
(𝐹𝐹 )Δ𝑆𝑆

EU 0.90 0.43 [0.36, 0.51] 0.67 0.35 [0.21, 0.50]

NNA 0.80 0.23 [0.17, 0.32] 0.73 0.25 [0.17, 0.36]

Only changing forcing variance—ShΔσ2(F)

EU −0.18 −0.03 [−0.10, 0.05] −0.55 −0.18 [−0.30, −0.11]

NNA −0.34 −0.08 [0.17, 0.02] −0.75 −0.22 [−0.30, −0.16]

Note. Shown statistics are correlations and regression slopes of Δσ2(T) against 
𝐴𝐴 Δ𝑇̄𝑇  over Europe (EU) and Northern North America (NNA). To account for 

regression dilution, we use a York regression technique (York et al., 2004) to 
estimate the slope. In addition to Δσ2(T) directly calculated from temperature 
outputs (𝐴𝐴 1𝗌𝗌𝗌𝗌 –𝐴𝐴 2𝗇𝗇𝗇𝗇 rows), also shown are the decomposition of Δσ2(T) according 
to Equation 4, where only sensitivity (𝐴𝐴 3𝗋𝗋𝗋𝗋 –𝐴𝐴 4𝗍𝗍𝗍𝗍 rows) or forcing variance (𝐴𝐴 5𝗍𝗍𝗍𝗍 –𝐴𝐴 6𝗍𝗍𝗍𝗍 
rows) are allowed to change. Numbers in brackets indicate 95% confidence 
intervals.

Table 1 
Cross-Model Relationship Between Δσ2(T) and 𝐴𝐴 Δ𝑇̄𝑇
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Contributions from higher-order interactions are smaller than first-order terms. Compared with a range from 
−0.5° to 2.0°C2 in 𝐴𝐴 𝐴𝐴

2

ℎ
(𝐹𝐹 )Δ𝑆𝑆 , O(Δ2) ranges only between −0.2° and 0.4°C2 for CMIP5 models in Europe. For 

CMIP6 models with high warming rates, because the effects of changes in sensitivity and forcing variance cancel 
each other (Figures 2a and 2c), their multiplication works in the same direction as ShΔσ2(F) to decrease tem-
perature variance. For the six models whose forcing variance decreases by more than 80 W2 m−4 in Europe, the 
contribution from O(Δ2) is, on average, 60% of that from ShΔσ2(F).

3.  Sensitivity Growth and Suppressed Evapotranspiration
VZ20 allows for diagnosing summertime land temperature variance. In this section, we develop a revised version 
of VZ20, which we refer to as VZ20r, to quantify how suppressed evapotranspiration and associated processes 
lead to sensitivity growth in both CMIP5 and CMIP6. Compared with VZ20, in addition to diagnosing changes in 
temperature variance, VZ20r also allows the diagnosis of temperature sensitivity to radiative forcing, as appears 
in the decomposition in Equation 1. Moreover, we also show that VZ20r better reproduces differences in simulat-
ed Δσ2(T) across CMIP models (Section 3.2).

Figure 2.  Decomposing changes in temperature variance. (a)–(b) Regional changes in temperature variance associated with 
changing sensitivity of temperature to forcing (y-axes) versus local warming (x-axes) for (a) Europe and (b) Northern North 
America. (c)–(d) Regional changes in temperature variance associated with changing forcing variance (y-axes) versus local 
warming (x-axes) for (c) Europe and (d) Northern North America. The setup of individual panels is the same as panel (c) 
in Figure 1. Small panels in (a) and (b) show changes in sensitivity (y-axes) against warming (x-axes) in respective regions. 
Changes in forcing variance versus warming are in Figures 8a and 8b.
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3.1.  Developing VZ20r From VZ20

VZ20 is derived in Vargas Zeppetello et al. (2020); here, we provide a summary of that derivation to establish 
nomenclature and then describe the revisions made to obtain VZ20r. A full derivation of VZ20r can be found in 
Appendix A.

VZ20 is premised on a quasi-equilibrium in surface energy and water budgets at monthly time scales. In the en-
ergy budget, net shortwave radiation is assigned as forcing, which is balanced by net longwave radiation, surface 
fluxes, and heat fluxes into the ground. Latent heat flux is parameterized as a product of atmospheric demand, V, 
quantified as the difference between saturated and actual specific humidity, and the saturation rate of surface soil, 
m. Anomalous net longwave radiation, Ln, sensible heat flux, H, and the flux into the ground, G, are parameter-
ized as being proportional to temperature anomalies.

After solving for m from the surface water budget and substituting back to the energy budget, the VZ20 model is,

𝑆𝑆
′

𝑛𝑛 − 𝜆𝜆𝜆𝜆𝜆𝜆
′
=

[

ℎ +
𝜌𝜌𝑎𝑎

𝑟𝑟0
𝛾𝛾 𝛾𝛾𝛾(1 − 𝜆𝜆)

𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜕𝜕

]

𝑇𝑇
′
,� (5)

where, an over-bar denotes 30-year climatology and a prime denotes monthly anomalies. 𝐴𝐴 𝐴𝐴
′

𝑛𝑛 denotes anomalies 
in net shortwave radiation, which is the radiative forcing in VZ20. A second form of forcing in the VZ20 model 
comes from precipitation anomalies, P′, whose energy implications are represented using the heat of vapouriza-
tion, γ, and a dryness index, λ. λ gives the proportion of potential water loss through evapotranspiration and ranges 
between zero and one. A higher λ is associated with a preference for evapotranspiration over runoff and indicates 
a drier climate (Vargas Zeppetello & Battisti, 2020). Note that λ and soil moisture are anticorrelated but are dif-
ferent conceptually. Whereas soil moisture represents water availability, λ reflects primarily atmospheric demand.

The right-hand-side (RHS) of Equation 5 represents longwave and sensible heat flux as well as evapotranspiration 
as being proportional to surface temperature anomalies, T′. The summed dependence of net-longwave, sensible 
heat and ground heat flux on T′ is represented by h, such that 𝐴𝐴 𝐴𝐴

′

𝑛𝑛 +𝐻𝐻
′
+ 𝐺𝐺

′
= ℎ𝑇𝑇

′ . Other terms on the RHS de-
note the dependence of evapotranspiration on T′, where this dependence increases with mean soil saturation, 𝐴𝐴 𝐴𝐴𝐴 , 
and decreases with the dryness index, λ. Density of air, ρa, and a minimum surface resistance parameter, r0, are 
used in parameterizing evapotranspiration. The dependence of saturation specific humidity on temperature, 𝐴𝐴

𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕
 , 

which is evaluated at the climatological temperature, is required for evaluating anomalies in V.

As discussed in Vargas Zeppetello and Battisti (2020), λ is key to interpreting Equation 5. As λ increases and 
atmospheric demand grows, the surface energy balance moves from an energy-limited regime to a water-limited 
regime. In the energy-limited regime, positive radiative forcing anomalies increase evapotranspiration by increas-
ing atmospheric demand. Resulting increases in latent heat flux offset forcing anomalies and damp temperature 
variability. Conversely, in the water-limited regime rainfall anomalies are more capable of driving anomalous 
latent heat flux. Because rainfall covaries negatively with insolation, decreases in latent heat anomalies tend to 
combine with positive anomalies in radiative forcing to increase the magnitude of temperature anomalies.

Taking the square of Equation 5 gives an expression for σ2(T) that is evaluated using the variance and covariance 
of Sn and P sampled from CMIP5 or CMIP6 simulations, along with sampled values for 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝑇̄𝑇  , and 𝐴𝐴 𝐴𝐴𝐴 . Here, q 
denotes specific humidity, which is used together with 𝐴𝐴 𝑇̄𝑇  to calculate V and λ. Although VZ20 reproduces the 
pattern of multimodel mean Δσ2(T) (Vargas Zeppetello & Battisti, 2020), it has little skill in reproducing the dif-
ference in Δσ2(T) across CMIP models, which we evaluate using Pearson's cross-correlation, r, on an individual 
grid-box basis across-models. On average, the r2 between CMIP and VZ20-based Δσ2(T) over NH midlatitude 
(30°–70°N) continents is 0.20 for VZ20 (Figure 3a).

We make four changes to VZ20. First, we extend the representation of radiative forcing to include downward 
longwave fluxes, L↓, in addition to Sn. This sum of L↓ and Sn gives the same F that is referred to in Equation 1. 
Vargas Zeppetello et al.  (2019) noted that L↓ involves clouds, water vapor, and air temperature and is closely 
related to surface temperature anomalies, and that L↓ should be a response rather than forcing. Atmospheric heat 
convergence in the free troposphere, however, also leads to changes in L↓, making it difficult to assign causal-
ity, particularly at regional and monthly scales. As we show in Section 3.2, significant increases in model skill 
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associated with updating forcing indicate that L↓, in addition to Sn, constitutes a substantial component of effec-
tive radiative forcing.

Second, we parameterize the upward longwave radiative response using the Stefan-Boltzmann law, L↑ = σT4. 
Note that here, σ denotes the Stefan-Boltzmann constant rather than σ(⋅) that we use to denote variability. An ad-
ditional term, 𝐴𝐴 4𝜎𝜎𝑇̄𝑇

3
𝑇𝑇

′ , is thus appended to the right-hand-side of Equation 5, and h is now made to only represent 
sensible heat and ground fluxes.

Figure 3.  Improvements from revising VZ20. Individual rows are for (a) the original VZ20, (b) assigning forcing to consist 
of Sn and L↓ rather than only Sn (update forcing), (c) using soil moisture rather than precipitation to represent soil saturation 
(update soil moisture), (d) further converts precipitation anomalies into radiative forcing anomalies, P′ = βF′ (VZ20r). In 
each row, the two maps show, respectively, cross-model correlation (upper) and York regression slope (lower) between CMIP 
and VZ20-based Δσ2(T). Statistics are evaluated after pooling all 48 CMIP models. A higher correlation (dark red) and a 
slope closer to one (purple) indicate better skill. The two scatter plots show regional mean VZ20-based (y-axes) versus CMIP 
(x-axes) Δσ2(T) over Europe (left) and Northern North America (right). Also shown are York regression slopes (black lines) 
and associated 95% confidence intervals (gray shadings).
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Third, we explicitly represent the saturation of surface soil. Whereas, VZ20 
approximates m using climatological precipitation divided by the maximum 
value over North America (Vargas Zeppetello et al., 2020), we use surface 
soil moisture, s (called “mrsos” in CMIP outputs). Note that CMIP models 
have widely variable magnitudes of s. For example, NorESM2-MM has a 
historical global average s of 28 kg m−2, whereas FGOALS-f3-L has only 
0.22 kg m−2. Models having low s still show negative correlations between 
monthly soil moisture and latent heat anomalies in humid areas, indicating a 
reasonable representation of land-air coupling (Berg & Sheffield, 2018). Ap-
parently, whereas“mrsos” is listed as total water mass in all forms in the top 
10 cm of the soil layer (Taylor et al., 2012), different CMIP models integrate 
over different soil depths. We, therefore, normalize surface soil moisture in 
each model by linearly mapping values between each model's 0.1% and 95% 
quantile of the 1976–2005 climatology to range between 0 and 1 kg m−2. 
Results are not qualitatively sensitive to the choice of the upper quantile of 
mapping, for which we also tried 90% and 99% values.

Finally, to permit a closed expression for temperature sensitivity to radia-
tive forcing, we combine radiative forcing and precipitation anomalies on 

the left-hand-side of Equation 5 by assuming that P′ = βF′. Combining F′ and P′ is suggested by the fact that 
cloud radiative properties and rainfall generally covary negatively (Figure 4a). In Europe and northern North 
America, the correlation between F′ and P′ is, on average, −0.53 and −0.48, respectively. Specifically, we assign 
β = −4 × 10−7 kg J−1, a typical value diagnosed from CMIP simulations (Figure 4b). Substituting P′ with F′ gives 
VZ20r,

(1 − 𝛽𝛽𝛽𝛽𝛽𝛽)𝐹𝐹
′
=

[

4𝜎𝜎𝑇̄𝑇
3
+ ℎ +

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝛾𝛾𝛾 𝛾𝛾(1 − 𝜆𝜆)

𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜕𝜕

]

𝑇𝑇
′
.� (6)

VZ20r-based sensitivity of temperature to radiative forcing is,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1 − 𝛽𝛽𝛽𝛽𝛽𝛽

4𝜎𝜎𝑇̄𝑇 3 + ℎ +
𝜌𝜌𝑎𝑎

𝑟𝑟0

𝛾𝛾𝛾 𝛾𝛾(1 − 𝜆𝜆)
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕

.� (7)

In evaluating Equation 7 we use CMIP climatological temperature, 𝐴𝐴 𝑇̄𝑇  ; surface soil moisture, 𝐴𝐴 𝐴𝐴𝐴 ; and specific hu-
midity, 𝐴𝐴 𝐴𝐴𝐴 . Other parameters are given in Table S1 in Supporting Information S1. VZ20r-based σ2(T) is calculated 
by multiplying VZ20r-based sensitivity with CMIP σ2(F), calculated over 30-year periods.

3.2.  Skill of VZ20r

VZ20r has greater skill than VZ20 in capturing cross-model differences in Δσ2(T) over NH midlatitudes. The 
averaged r2 increases from 0.20 in VZ20 to 0.43 in VZ20r (correlation maps in Figures 3a and 3d). The improve-
ment comes mainly from including L↓ in forcing, increasing r2 by 0.16 (Figure 3b), and converting precipitation 
anomalies into forcing anomalies, increasing r2 by another 0.11 (Figure 3d). Using normalized surface soil mois-
ture, however, slightly decrease r2 by 0.04. Lack of improvement may reflect the fact that inter-model differences 
in rainfall and soil moisture variations are highly correlated. Improvements in r2 are also accompanied by im-
proved agreement in the VZ20r predictions of regional CMIP Δσ2(T) (scatter plots in Figure 3).

VZ20r also reproduces the multi-model mean pattern of historical CMIP sensitivity, which generally increases 
with aridity from 0.08°C per W m−2 in the Arctic to approximately 0.2°C per W m−2 in deserts (Figures 5a 
and  5b). Moreover, VZ20r reproduces the pattern of multimodel mean changes in sensitivity, which has the 
largest increase in Europe and central North America (Figures 5c and 5d). Most importantly, VZ20r reproduces 
cross-model differences in sensitivity change, with the cross-model correlation between VZ20r-based and CMIP 
sensitivity change being 0.75 in Europe and 0.89 in Northern North America (Figures 5e and 5f).

The skill of VZ20r is relatively low in Arctic and arid regions. An important process that is lacking in VZ20r is 
snow cover at high-latitudes. Another factor is that the negative β we use does not capture the covariance between 

Figure 4.  Covariability of precipitation and radiative forcing anomalies. (a) 
Correlation between monthly radiative forcing, F′ and precipitation anomalies, 
P′. (b) Sensitivity of P′ to F′ in Northern Hemisphere midlatitudes. For both 
maps, statistics are first evaluated using 30-year outputs within each model 
and then averaged over all models and both periods.
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precipitation and radiative forcing expected in arid regions whereby, a positive rainfall anomaly increases wa-
ter vapor in the air column and hence L↓. Nevertheless, VZ20r evidently captures the essential processes for 
understanding distinct sensitivity change over the NH midlatitudes, where the transition of evapotranspiration 
from a more energy-limited to a more water-limited regime takes place (Berg & Sheffield, 2018; Seneviratne 
et al., 2010; Vargas Zeppetello & Battisti, 2020).

3.3.  Sensitivity Growth Is Consistently Due To Suppressed Evapotranspiration in CMIP5 and CMIP6

VZ20r indicates that suppressed evapotranspiration primarily controls sensitivity growth in both CMIP5 and 
CMIP6. According to Equation 7, sensitivity is a function of λ, 𝐴𝐴 𝐴𝐴𝐴 , and 𝐴𝐴 4𝜎𝜎𝑇̄𝑇 3 . We decompose the contributions 
from each of these three factors by changing each factor individually while keeping others fixed at their historical 
values (Figure 6).

Both λ, the dryness index, and 𝐴𝐴 𝐴𝐴𝐴 , surface soil moisture, are related to evapotranspiration. On average, changing λ 
explains ∼70% of the cross-model difference in sensitivity growth in both Europe and northern North America 
(Figures 6a and 6b), and changing 𝐴𝐴 𝐴𝐴𝐴 contributes another ∼40% (Figures 6c and 6d). Furthermore, the consistent 
fractional contribution from λ and 𝐴𝐴 𝐴𝐴𝐴 between CMIP5 and CMIP6 indicates that evapotranspiration processes are 
represented consistently between CMIP5 and CMIP6. The Planck factor, 𝐴𝐴 4𝜎𝜎𝑇̄𝑇 3 , shows a small decrease with local 
warming (Figures 6e and 6f) and is consistent between CMIP5 and CMIP6.

Figure 5.  VZ20r reproduces multimodel mean and cross-model difference in sensitivity. (a) CMIP and (b) VZ20r-based multimodel mean historical sensitivity. (c)–(d) 
As (a)–(b) but for multimodel mean sensitivity change. (e)–(f) As scatter plots in Figure 3 but for VZ20r-based (y-axes) versus CMIP (x-axes) sensitivity change in (e) 
Europe and (f) Northern North America.
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The fact that warm and water-limited regimes suppress evapotranspiration and amplify temperature anomalies 
is well recognized (e.g., Duan et al., 2020; Fischer et al., 2012; Lenderink et al., 2007; Rasmijn et al., 2018; Se-
neviratne et al., 2010; Vargas Zeppetello & Battisti, 2020). Our contribution is to develop a revised framework 
to reproduce and understand differences in predictions among CMIP models. Our results indicate that processes 
related to land-air coupling and evapotranspiration, which will make surface temperatures more sensitive to 
radiative forcing under a warming and drying climate, can be captured by VZ20r and appear consistent between 
CMIP5 and CMIP6.

4.  Distinct Changes in Forcing Variability Between CMIP Generations
We showed in Section 2 that decreases in forcing variability cancel the effect of increasing sensitivity and result 
in a more stable temperature variance in CMIP6 models. Changes in forcing variance, Δσ2(F), can be understood 
in the context of changes in the percentage of cloud coverage. In both CMIP generations σ2(F) increases with 
monthly mean cloud coverage until approximately 70% and then decreases (Figure 7). Stated differently, regions 

Figure 6.  Decomposing sensitivity change. Similar to the bottom panels in Figure 5 but for decomposing VZ20r-based 
sensitivity change by (a–b) only changing the dryness index λ, (c–d) only changing surface soil moisture, and (e–f) only 
changing the Planck factor. The left and right columns are for Europe and Northern North America, respectively.
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with consistent clear-sky or fully cloudy conditions have little variability in 
radiative forcing. Cloud height and albedo will also influence σ2(F), but we 
do not undertake such a detailed analysis in the present context.

Despite the structural similarity, there are several important differences in the 
distribution of forcing variance conditional on mean cloud percent between 
CMIP5 and CMIP6. First, median σ2(F) in CMIP6 has an absolute sensitivity 
that is higher than in CMIP5. For example, a decrease in cloud percent from 
60% to 30% is associated with a median σ2(F) decrease of 150 W2 m−4 in 
CMIP6 but only a 75 W2 m−4 decrease in CMIP5. Second, CMIP6 models 
have, on average, larger decreases in mean cloud amount in NH midlatitudes 
than CMIP5 models, which is presumably also related to their higher warm-
ing rates that decrease relative humidity and suppress cloud formation (Figure 
S2 in Supporting Information S1; Emanuel, 2008; Heymsfield et al., 1998; 
Price & Wood, 2002). Finally, the distribution of cloud variance with mean 
cloud amount is narrower in CMIP6 and changes in forcing variance with 
changes in cloud amount are more uniform. We note that such differences 
may reflect different cloud parameterization schemes (e.g., Jian et al., 2020; 
Vignesh et al., 2020; Zelinka et al., 2020), though a detailed exploration is 
beyond the scope of this study.

It is also helpful to decompose forcing variance into the variance of net solar 
radiation, σ2(Sn), downward longwave radiation, σ2(L↓), and the covariance 
between the two (Figure 8). We consider the contribution of each component 
to the scaling relationship between Δσ2(F) and 𝐴𝐴 Δ𝑇̄𝑇  in the two CMIP genera-
tions. Whereas CMIP6 gives larger decreases in σ2(F) than CMIP5 in Europe 
and northern North America, contributions from individual forcing compo-
nents vary with region. Solar radiation contributions are key to differences 
between CMIP5 and CMIP6 in Northern North America. Specifically, σ2(Sn) 
accounts for 7.9 out of a total difference of 11.6 W2 m−4 per °C warming in 
the relationship between Δσ2(F) and 𝐴𝐴 Δ𝑇̄𝑇  (Figures 8d, 8f, and 8h). In western 
Europe, however, σ2(Sn), σ2(L↓), and their covariance contribute, respectively, 
4.4, 4.0, and 5.6 W2 m−4 per °C warming to the difference in the relationship 
between Δσ2(F) and 𝐴𝐴 Δ𝑇̄𝑇  (Figures 8c, 8e, and 8g).

There seems to be overall consistency of median radiative forcing variance 
with mean cloud cover, as well as decreases in summer cloud percent, be-
tween CMIP5 and CMIP6. In CMIP5, however, changes in radiative forcing 
differ substantially across models for particular regions, as do the contribu-

tions to radiative forcing from solar and longwave as well as their covariation. CMIP6 shows more uniform 
changes in forcing variance by region and across models, though contributions from solar and longwave remain 
distinct. Unlike changes in the sensitivity to forcing, which uniformly increases across models and regions with 
overall warming and drying, we observe heterogeneous changes in radiative forcing that likely reflect multiple 
physical processes that are regionally and model dependent. Thus, we do not anticipate a single, cohesive expla-
nation for changes in radiative forcing in Northern Hemisphere mid-latitudes.

5.  Discussion and Conclusion
Our analyses show that land surfaces in semi-humid regions become more sensitive to radiative forcing in warm-
er and drier climates in both CMIP5 and CMIP6 generations due to suppressed surface evapotranspiration. The 
positive relationship between 𝐴𝐴 Δ𝑇̄𝑇  and Δσ2(T) found in NH mid-latitudes in CMIP5, however, no longer holds in 
CMIP6 because CMIP6 simulations produce a uniform decrease in radiative forcing variance with decreasing 
cloud amount.

These results reveal two scenarios for changes in the distribution of midlatitude monthly summertime temper-
atures: compounding and canceling (Figure 9a). In the compounding scenario, Δσ2(T) increases with warming 

Figure 7.  Forcing variance and mean cloud amount. The distribution of 
radiative forcing variance versus mean cloud coverage percent for (a) CMIP5 
(orange) and (b) CMIP6 (blue). Distributions are across all continental grids 
over both the historical (1976–2005) and the future (2071–2100) period and 
across all models within a CMIP generation; indicated are the median (solid 
line), interquartile range (dark shading), and 95% range (light showing). For 
comparison the median from the alternate generation is also shown (dashed 
line). The dependence of forcing variance on cloud percent is generally flatter 
in CMIP5 than CMIP6. Markers indicate averages over Western Europe 
(light) and Northern North America (dark) for individual models, with arrows 
pointing from the historical to future period.
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because of increased sensitivity associated with suppressed evapotranspiration. In the canceling scenario, de-
creasing forcing variance cancels the effect of sensitivity growth, leading to Δσ2(T) being almost independent of 
warming.

Compounding leads to more frequent extreme heat events, and we quantify this distinction for western Europe 
after controlling for three features of the CMIP simulations. First, although CMIP5 and CMIP6 generally respec-
tively accord with the compounding and canceling scenarios, individual models differ. For example, three CMIP6 
models—CMCC-CM2-SR5, EC-Earth3-Veg, and FIO-ESM-2-0—have Δσ2(T) higher than 1°C2 in Europe (Fig-
ure 1c). We thus assign individual model simulations to the compounding and canceling scenario irrespective of 
CMIP generation (Figure 9a). Second, we shift the historical distribution of each model to center on the observed 
mean in Europe, 18.6°C (Harris et al., 2020), in order to control for model bias. We note that, in Europe, these 
biases correlate neither with 𝐴𝐴 Δ𝑇̄𝑇  nor Δσ2(T) (r2 < 0.1). Finally, in order to control for differences in the amount of 
warming, we consider only models whose mean warming in 2071–2100 relative to 1976–2005 is between 6° and 
8.5°C. We retain 11 models for the compounding and 10 models for the canceling scenario.

Although historical distributions of the two scenarios have similar widths, the compounding scenario has a wider 
distribution at the end of the 21st century (Figure 1). The probability of high-temperature extremes is 50% higher 

Figure 8.  Changes in forcing variance and warming. (a)–(b) Regional Δσ2(F) (y-axes) versus 𝐴𝐴 Δ𝑇̄𝑇  (x-axes) in (a) Europe and 
(b) Northern North America. (c)–(h) As (a)–(b) but decompose forcing variance to contributions from (c)–(d) Δσ2(Sn), (e)–(f) 
Δσ2(L↓), and (g)–(h) changes in the covariance between Sn and L↓.
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in the compounding scenario when the threshold is 28°C, and this percentage 
increases quickly with temperature threshold (Figures 9d and 9e). In addi-
tion to the probability of extreme events, environmental damages are often 
nonlinear to increasing temperatures (Schlenker & Roberts, 2009), such that 
overall damages increase with σ2(T). The association of greater temperature 
variance with low soil moisture may imply even more severe consequences 
when accounting for the joint roles of water availability and temperature in 
determining yield outcomes (Rigden et al., 2020).

Many additional analyses would be useful to better understand the distribu-
tion of simulated changes in temperatures. Our focus has been on interannual 
variations at monthly timescales for two regions of the NH midlatitude. A 
global analysis would be useful for assessing the generalizability of uniform 
changes in sensitivity and documenting heterogeneous changes in forcing 
variance. Also useful would be to investigate variations at seasonal (e.g., 
Santer et al., 2018) and daily timescale (e.g., Duan et al., 2020).

Scope also exists for further understanding physical processes responsible 
for changes in both temperature sensitivity and forcing variability. Quan-
tifying the contribution of land-use (Christidis et  al.,  2013) in addition to 
surface warming and drying would further constrain predicted sensitivity 
change. Examining changes in the representation of cloud processes, in-
cluding cloud characteristics and parameterization (e.g., Jian et  al.,  2020; 
Vignesh et al., 2020), appears crucial for further understanding inter-gener-
ational differences in forcing variance. Also helpful would be to document 
the degree to which changes in large-scale circulation (Dafka et al., 2019; 
Huguenin et al., 2020) and the associated free-tropospheric advection (Holm-
es et al., 2016) contribute to forcing variance. Other atmospheric processes, 
such as the strength of water-vapor feedback and atmospheric heat storage 
may also contribute. Decomposing and quantifying the various contributions 
to the variance in longwave radiation using kernel methods, which have been 
widely used for feedback analyses (e.g., Soden et al., 2008), could also be 
helpful. A related question is the degree to which VZ20r can be accurate 
without coupling with atmospheric processes. Our approach of separating 
the physics between surface-temperature sensitivity and atmospheric forcing 
is useful for analysis and constructing simple models. However, any expla-
nation of temperature extremes that depends upon prescribing atmospheric 
forcing will be incomplete.

Finally, it would be relevant to compare simulated changes against obser-
vations. Examining whether observed changes in evapotranspiration (Pas-
colini-Campbell et al., 2021) have led to detectable changes in temperature 
sensitivity appears useful for testing model predictions. Using satellite obser-
vations and reanalyses to evaluate the relationship between forcing variance 
and mean cloud amount may help in evaluating which models and CMIP 
generation is closer to reality (e.g., Bodas-Salcedo et al., 2008). In addition, 
monitoring the evolution of changes in observed clouds and radiative forcing 
will also provide insights for constraining simulated forcing variance and un-
certain predictions of temperature variability.

Figure 9.  Distinct implications for the two scenarios of Δσ2(T). (a) Temporal 
evolution (thin lines) of Δσ2(T) and 𝐴𝐴 Δ𝑇̄𝑇  in Europe. Markers denotes individual 
models in the compounding (red) and the canceling scenario (gray). The 
base period is 1976–2005, and changes are calculated sliding annually from 
1977–2006 to 2071–2100. See texts for more details of scenario assignment. 
Also shown is the central estimate (thick curve) and 95% c.i. (shading) of a 
cubic polynomial fitting that pools all 30-year periods from all models in each 
scenario. The crossmodel relationship of end-of-century changes (markers) 
agree with the fitted overall evolution (curve), indicating that, for specific 
scenario, warming differences within and across models are interchangeable. 
(b)–(c) Distribution of European-mean monthly temperatures in the 
historic (1976–2005, light) and future (2071–2100, dark) period for (b) the 
compounding and (c) the canceling scenario. In addition to actual histograms 
(bars), also shown are smoothed distributions (curves). We remove seasonal 
cycles and linear trends before calculating temperature anomalies, and we 
only use models whose European warming is between 6° and 8.5°C. (d) The 
probability of future temperatures exceeding certain thresholds (x-axis) in the 
compounding (red) and canceling scenario (gray). (e) The ratio of exceeding 
probability (the compounding divided by the canceling scenario) as a function 
of temperature threshold.
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Appendix A:  Deriving VZ20r
For completeness, we provide the derivation of VZ20r, which generally follows that of Vargas Zeppetello 
et al. (2020). Where, our derivation diverges from Vargas Zeppetello et al. (2020) is explicitly noted. We begin 
with a surface energy balance,

𝐹𝐹 = 𝐿𝐿↑ +𝐻𝐻 + 𝛾𝛾𝛾𝛾 + 𝐺𝐺𝐺� (A1)

F denotes radiative forcing as the summation of net shortwave and downward longwave radiation, rather than only 
net shortwave radiation as in VZ20. Radiative forcing is balanced by upward longwave radiation at the surface, 
L↑, sensible heat flux, H, latent heat flux, γE, and heat flux into the soil column, G.

Evapotranspiration, E, is represented as,

𝐸𝐸 =
𝜌𝜌𝑎𝑎


𝑉𝑉 =

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝑠𝑠𝑠𝑠 𝑠� (A2)

V is the specific humidity deficit, or the difference between saturation and actual specific humidity. ρa is the 
density of air, taken as 1.2 kg m−3. The bulk surface resistance, 𝐴𝐴  , is approximated as a minimum bulk surface re-
sistance, r0, divided by the saturation of surface soil, 𝐴𝐴

𝑟𝑟0

𝑠𝑠
 , such that resistance increases for drier surface. Following 

Vargas Zeppetello et al. (2020), r0 is 75 s/m, a typical resistance for wet grassland (Jones, 1985). This approach 
of adjusting a minimum resistance according to variations in soil moisture is widely used to model bulk canopy 
conductivity (e.g., Jones, 1985). Note that in Equation A2, we ignore variations in 𝐴𝐴  depending on differences 
in vegetation, but this simple representation nevertheless reproduces sensitivity changes in Europe and Northern 
North America across CMIP models (see Section 3.2 in the main text).

Substituting Equation A2 into Equation A1 and taking the derivative gives

𝐹𝐹
′
= 𝐿𝐿

′

↑
+𝐻𝐻

′
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′
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′
)

+ 𝐺𝐺
′
,� (A3)

where an over-bar denotes a climatological mean, and a prime denotes monthly anomalies relative to a climatology.

Monthly anomalies in surface water balance are,

𝑃𝑃
′
= 𝐸𝐸

′
+𝑅𝑅
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′
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′
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where runoff anomalies, R′, are assumed to be proportional to soil moisture anomalies, R′ = μs′. The original 
VZ20 model sets μ equal to five times of the standard deviation of monthly precipitation, σ(P), a quantity that 
varies with space. In VZ20r, we assign the median value of μ across space and all CMIP models, 6 × 10−5 s−1. 
Rearranging terms in Equation A4 leads to a representation of soil moisture anomaly,

�′ =
� ′ − ��

�0
�̄� ′

��
�0
�̄ + �

.� (A5)

Equation A5 is substituted into Equation A3 to give,

� ′ = �′
↑ +� ′ +

��
�0
��̄(1 − �)� ′ + ��� ′ + �′,� (A6)

where 𝐴𝐴 𝐴𝐴 =

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝑉𝑉

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝑉𝑉 +𝜇𝜇

 is the proportion of potential water loss through evaporation and is interpreted as a dryness 

index (Vargas Zeppetello et al., 2020).

The monthly anomaly in specific humidity deficit is,

� ′ = �∗′ − �′ =
��∗

��
� ′ −

��
��

� ′,� (A7)

where, q* and q denote, respectively, saturation and actual specific humidity. 𝐴𝐴
𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝜕𝜕
 is the derivative of saturation 

specific humidity with respect to temperature and is evaluated at 𝐴𝐴 𝑇̄𝑇  using the Clausius-Clapeyron equation. 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is 
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the derivative of specific humidity to precipitation, but which is omitted because anomalies of q are small com-
pared to those of q* (Vargas Zeppetello et al., 2020).

After substituting Equation A7 into Equation A6, unlike (Vargas Zeppetello et al., 2020) that assigned anomalous 
longwave radiation to be proportional to T′, we apply the Stefan-Boltzmann law to represent upward longwave 
radiation, 𝐴𝐴 𝐴𝐴

′

↑
= 4𝜎𝜎𝑇̄𝑇

3
𝑇𝑇

′ , where σ is the Stefan-Boltzmann constant. Note that σ differs from σ(⋅), which we use to 
denote the standard deviation of a variable. Sensible heat fluxes and ground heat uptake are assumed proportional 
to surface temperature anomalies, H′ + G′ = hT′, where h = 4 W m−2°C−1. Applying these parameterizations to 
Equation A6 gives,

𝐹𝐹
′
− 𝜆𝜆𝜆𝜆𝜆𝜆

′
=

[

4𝜎𝜎𝑇̄𝑇
3
+ ℎ +

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝛾𝛾𝛾 𝛾𝛾(1 − 𝜆𝜆)

𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜕𝜕

]

𝑇𝑇
′
.� (A8)

Finally, in order to get a closed from representation of temperature sensitivity and diverging from the approach of 
Vargas Zeppetello et al. (2020), we substitute P′ with βF′ to obtain VZ20r (Equation 6 in the main text),

(1 − 𝛽𝛽𝛽𝛽𝛽𝛽)𝐹𝐹
′
=

[

4𝜎𝜎𝑇̄𝑇
3
+ ℎ +

𝜌𝜌𝑎𝑎

𝑟𝑟0
𝛾𝛾𝛾 𝛾𝛾(1 − 𝜆𝜆)

𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜕𝜕

]

𝑇𝑇
′
.�
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