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ABSTRACT: Land surface air temperatures (LSAT) inferred from weather station data differ among major research
groups. The estimate by NOAA’s monthly Global Historical Climatology Network (GHCNm) averages 0.028C cooler be-
tween 1880 and 1940 than Berkeley Earth’s and 0.148C cooler than the Climate Research Unit estimates. Such systematic
offsets can arise from differences in how poorly documented changes in measurement characteristics are detected and ad-
justed. Building upon an existing pairwise homogenization algorithm used in generating the fourth version of NOAA’s
GHCNm(V4), PHA0, we propose two revisions to account for autocorrelation in climate variables. One version, PHA1,
makes minimal modification to PHA0 by extending the threshold used in breakpoint detection to be a function of LSAT
autocorrelation. The other version, PHA2, uses penalized likelihood to detect breakpoints through optimizing a model-
selection problem globally. To facilitate efficient optimization for series with more than 1000 time steps, a multiparent ge-
netic algorithm is proposed for PHA2. Tests on synthetic data generated by adding breakpoints to CMIP6 simulations and
realizations from a Gaussian process indicate that PHA1 and PHA2 both similarly outperform PHA0 in recovering accurate
climatic trends. Applied to unhomogenized GHCNmV4, both revised algorithms detect breakpoints that correspond with
available station metadata. Uncertainties are estimated by perturbing algorithmic parameters, and an ensemble is con-
structed by pooling 50 PHA1- and 50 PHA2-based members. The continental-mean warming in this new ensemble is con-
sistent with that of Berkeley Earth, despite using different homogenization approaches. Relative to unhomogenized data,
our homogenization increases the 1880–2022 trend by 0.16 [0.12, 0.19]8C century21 (95% confidence interval), leading to
continental-mean warming of 1.65 [1.62, 1.69]8C over 2010–22 relative to 1880–1900.

SIGNIFICANCE STATEMENT: Accurately correcting for systematic errors in observational records of land surface
air temperature (LSAT) is critical for quantifying historical warming. Existing LSAT estimates are subject to systematic
offsets associated with processes including changes in instrumentation and station movement. This study improves a
pairwise homogenization algorithm by accounting for the fact that climate signals are correlated over time. The revised
algorithms outperform the original in identifying discontinuities and recovering accurate warming trends. Applied to
monthly station temperatures, the revised algorithms adjust trends in continental mean LSAT since the 1880s to be
0.168C century21 greater relative to raw data. Our estimate is most consistent with that from Berkeley Earth and indi-
cates lesser and greater warming than estimates from NOAA and the Met Office, respectively.

KEYWORDS: Climate change; Temperature; Climate records; Bias; Changepoint analysis

1. Introduction

Land surface air temperature (LSAT), as measured by
weather stations, is crucial for monitoring long-term climate
variations, but is also subject to systematic errors including
those associated with changes in instrumentation, movement of
stations, and changes in measurement environment (Trewin
2010). The process of detecting discontinuities in records and
removing biases to better recover climatic variations is generally
called homogenization (Peterson et al. 1998; Costa and Soares
2009; Venema et al. 2012). Various homogenization approaches
indicate that temperature observations prior to the 1940s need
to be adjusted several tenths of a degree Celsius cooler, thereby
increasing the implied warming over the last century (Menne
et al. 2018; Rohde et al. 2013b). Despite this agreement in the

sign of adjustment, the magnitude of adjustments remains un-
certain, leading to continental mean temperatures that differ by
up to 0.28C between 1880 and 1940 among existing estimates
(Fig. 1), where temperatures anomalies are specified relative to
a 1982–2014 average.

The most commonly applied means of homogenizing LSATs
is pairwise station homogenization (Menne and Williams 2009,
hereafter MW09). This method, which we refer to as PHA0, is
based on comparing one station with its neighbors. PHA0 has
been carefully tested and routinely used for over a decade
(Menne and Williams 2009; Lawrimore et al. 2011; Menne et al.
2018).

We briefly review PHA0 to establish nomenclature. PHA0 first
identifies neighbors for each station according to distance between
stations and correlation coefficient in temperature series. As the
second step, a standard normal homogenization test (SNHT;
Alexandersson 1986) is performed to each difference temperature
series between a station and its neighbors to find potentialCorresponding author: Duo Chan, duo.chan@soton.ac.uk
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breakpoints. SNHT involves calculating the sum of the squared
means of two consecutive segments of a normalized time series:

T0 5 max
1#y,n

[yz21 1 (n 2 y)z22], (1)

where n is the length of the record, y is a time index, and z1
and z2 are the means over months 1 to y and months y 1 1 to
n, respectively. In contrast to a weighted linear sum of the
means that would be invariant to the selection of breakpoint,
T0 is maximized when either z1 or z2 become large. A null
critical value for T0 is determined by repeatedly realizing T0

from randomly generated time series. As described further
below, these time series have historically been realized as
white noise, or devoid of autocorrelation. If the sample value
of T0 exceeds the null critical value, the time series is broken
into two segments at the index y that maximizes T0.

The test is performed iteratively between a splitting phase,
where the algorithm tests whether each segment of time series
contains any further breakpoints, and a merging phase, where
the algorithm combines consecutive segments if the combined
time series fail to pass SNHT. After this identification, PHA0

double-checks each potential breakpoint to confirm that it re-
flects a break rather than linear trend using a Bayesian infor-
mation criterion approach (Schwarz 1978).

In the third step, PHA0 attributes confirmed breakpoints to
stations that show the greatest difference with neighbors. In a
fourth step, PHA0 combines attributed breakpoints that are tem-
porally close to one another to account for uncertainties in the
timing of identified breakpoints. In the fifth step, an adjustment
for each breakpoint is estimated by comparing the station to
which a breakpoint is attributed with at least two homogeneous
neighbors, and finally, in the sixth step, these adjustments are ap-
plied to individual stations relative to values in the last segment.

PHA0 has been used to homogenize temperatures compiled
under the Global Historical Climate Network Monthly version 4
(GHCNmV4; Menne et al. 2018). In addition to central estimates
generated using a default combination of PHA0 parameters, an
ensemble generated by perturbing algorithmic parameters in
PHA0 (Williams et al. 2012, hereafter WMW12) is used to quan-
tify uncertainties in GHCNmV4 at global and regional scales.
We aim to closely reproduce PHA0 in MATLAB and compari-
son against the results from the original FORTRAN software
(https://www.ncei.noaa.gov/pub/data/ghcn/v3/software/) indicates
consistency.

The paper is organized as follows. Section 2 begins with a test
of PHA0 on a set of simulated temperatures, augmented with
random breakpoints, highlighting how the skill of PHA0 dimin-
ishes with increasing autocorrelation in data. In section 3, we in-
troduce two revised algorithms designed to enhance PHA0 by
accounting for autocorrelation. The first, named PHA1, mini-
mally modifies PHA0 by adjusting the threshold used in SNHT
to be a function of autocorrelation. The second, termed PHA2,
replaces SNHT with a more sophisticated statistical technique
known as penalized likelihood (PL; Lund et al. 2023). The skill
of both algorithms is assessed in section 4 using simulated tem-
peratures and synthetic data. In section 5 we apply both revised
algorithms to station temperatures compiled in GHCNmV4,
thereby creating an ensemble of adjusted station temperatures
dating back to the 1880s. Finally, in section 6, we discuss our
findings, compare our results with existing temperature datasets,
and reflect on the implications and future research directions.

2. Applying PHA0 to perturbed CMIP6 simulations

We evaluate PHA0 using synthetic cases where we intro-
duced a fixed set of random breakpoints into temperatures
simulated by 17 Coupled Model Intercomparison Phase 6
(CMIP6; Eyring et al. 2016) models.1 We use surface air

FIG. 1. Continental mean temperature anomalies in existing
estimates. Post-1880 temperatures from the raw monthly Global
Historical Climatology Network version 4 (GHCNmV4; Menne
et al. 2018; gray), homogenized GHCNmV4 (by Menne et al. 2018;
blue), Berkeley Earth Temperature (Rohde et al. 2013b; red), and
Climate Research Unit Temperature (CRUTEM5; Osborn et al.
2021; green). Anomalies are relative to the mean over 1982–2014.
To calculate the global mean series for raw and homogenized
GHCNmV4, we first calculate station-wise temperature anomalies
using a pairing-and-matching method following Chan et al. (2023).
All temperature anomalies are binned to 58 3 58 resolution before
averaging over the least common data coverage globally. The green
shading shows the 95% c.i. of a 200-member ensemble associated
with CRUTEM5, where land temperatures are derived by subtract-
ing HadSST4 (Kennedy et al. 2019) from non-infilled HadCRUT5
(Morice et al. 2021). The upper left panel shows the adjustments to
individual datasets relative to the raw GHCNmV4 estimate.

1 Models we use are ACCESS-CM2, CAMS-CSM1-0, CMCC-
CM2-SR5, E3SM-1-1, EC-Earth3, EC-Earth3-Veg, EC-Earth3-Veg-
LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, INM-CM4-8, INM-
CM5-0, MIROC6, MRI-ESM2-0, NESM3, NorESM2-LM, and
NorESM2-MM.
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temperature from the r1i1p1f1 member of each model and
concatenate the historical all-forcing experiment from 1970 to
2014 and the SSP5–8.5 experiment from 2015 to 2019. Tem-
peratures are interpolated to the location of U.S. weather sta-
tions using a bilinear method to retain the covariance and
autocorrelation structures in temperature field. A set of
randomly timed breakpoints having random magnitudes are
then introduced to each simulation. Appendix A contains
details regarding the distribution of breakpoint timing and
magnitude.

Breakpoints are identical across models but the skill of PHA0

in recovering temperature trends, as measured by station-wise
root-mean-square error (RMSE), varies by more than a factor
of 2 across models (Fig. 2). CAMS-CSM1-0 has the lowest
RMSE at 0.158C century21 (one standard deviation), whereas
MIROC6 has the highest RMSE at 0.398C century21. We
present evidence that the difference in the skill of PHA0

across models relates to differences in the autocorrelation of
temperature. Higher autocorrelation leads to a higher chance
of realizing values of T0 that exceed the critical value by
chance. There is a strong correlation across models of 0.75
between the mean lag-1 autocorrelation in the difference
temperature series between neighboring stations, referred to
as a, and the RMSE between inferred and actual tempera-
ture trends (Fig. 2).

To further investigate the relationship between a and the
performance of PHA0, we conduct synthetic analyses using
spatially and temporally correlated temperatures. Synthetic
temperatures are generated from a multivariate Gaussian pro-
cess with fixed a values across all stations (see appendix A for

details). Synthetic ensembles having larger a are systemati-
cally associated with higher RMSE, paralleling the trend found
across CMIP6 simulations (Fig. 2) and indicating that differ-
ences in autocorrelation are the primary explanation for
cross-model differences in skill. These results suggest that ac-
counting for autocorrelation in climate signals may improve
the skill of PHA0 in detecting breakpoints and recovering
long-term temperature trends. In this study, we test whether
two revised algorithms that account for autocorrelation show
improved skill.

In addition to a potential need to account for autocorre-
lation, we note that, on average, only 55% of identified
breakpoints in the CMIP6 synthetic analyses are adjusted,
reflecting the fact that PHA0 estimates adjustments only if
several neighboring stations that have homogeneous data
are present. It follows that running further iteration of the
homogenization algorithm can allow for a greater fraction
of breakpoints to be adjusted. We expect such an iterative
approach to be especially helpful when changes in instru-
mentation that may be associated with breakpoints are
clustered in space and time, which is known to be the case
in the U.S. weather network (Menne and Williams 2009;
Williams et al. 2012).

3. Revised pairwise homogenization algorithms

We introduce two revised algorithms that develop upon
PHA0 to account for autocorrelation when identifying break-
points in the difference series between target–neighbor pairs.
Later steps to attribute breakpoints to specific stations, combine

FIG. 2. The skill of the original pairwise station homogenization algorithm (PHA0) decreases
with autocorrelation of climatic signals. The skill of PHA0 is quantified using the station-wise
root-mean-square error (RMSE) of long-term trends over the continental United States after ad-
justment for 17 CMIP6 models (markers) and synthetic analyses (white dots connected by a
black line). RMSE increases with the lag-1 autocorrelation (a) in the difference temperature se-
ries between neighbors. The horizontal bar on each marker represents the 95% confidence inter-
val for values of a across individual stations, and the vertical bar is the 95% confidence interval
for mean RMSE over all stations. The confidence interval of RMSE is estimated by bootstrap-
ping blocks of 100 stations with replacement.
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redundant breakpoints, and estimate the remainder’s adjust-
ment are kept the same as in PHA0 (Fig. 3). In the first revised
algorithm, which we call PHA1, we make a small modification
to PHA0 to adjust the threshold of SNHT according to autocor-
relation estimates. The second algorithm, called PHA2, replaces
SNHT with a technique called penalized likelihood (PL; Lund
et al. 2023). The main texts focuses on the revision in both algo-
rithms relative to PHA0, and more details for the full algorithms
are in the appendixes.

a. PHA1

PHA1 accounts for autocorrelation by making critical values
a function of both series length n and lag-1 autocorrelation a.
To estimate these critical values, we model temperature differ-
ence time series as an order-1 autoregressive process:

xt 5 axt21 1 et: (2)

In Eq. (2), a is the system memory and e is white noise drawn
from a standard normal distribution N(0, 1). We explore val-
ues of a between 0 and 0.4, a typical range across CMIP6 sim-
ulations, and values of n between 5 and 3500. For each

combination of a and n, we generate 50 000 random series
and normalize each to calculate the SNHT test statistics T0

following Eq. (1). Higher values of a give greater autocorrela-
tion and increased SNHT critical values above which a break-
point is provisionally identified. For example, for a series with
more than 500 time steps, the 90% threshold of T0 when a

equals 0.3 is more than 1.7 times of the threshold when a

equals zero.
We use a sliding window method to estimate a. This ap-

proach is useful because breakpoints in a time series can sys-
tematically shift subsequent data points, leading to positively
biased a if calculated directly from a series containing these
disruptions. Estimating a from shorter segments reduces this
bias because a shorter segment is less likely to contain break-
points. Specifically, a window’s length is chosen as the smaller
of two values: 100 months or one-third of the total length of
the time series, and the window moves sequentially from the
start to the end of the series. Given that a is assumed to be
temporally stationary but a estimates might contain occa-
sional outliers due to breakpoints, the median of all a values
calculated across these windows is used as the final estimate.
This approach not only accounts for variations within the se-
ries but also helps to mitigate the impact of any individual
outlier segments. Additionally, to refine the accuracy of a es-
timation, its value is recalculated at the beginning of a split-
ting phase by excluding windows overlapping with any time
steps marked as breakpoints.

Following the discussion near the end of section 2, PHA1

iterates between estimation (step 5 in Fig. 3) and implementa-
tion of adjustments (step 6 in Fig. 3). Specifically, in the sec-
ond iteration, we send not-yet-adjusted breakpoints, due to
either having insufficient homogeneous neighbors or nonsig-
nificant adjustment estimates, back to adjustment estimation.
Adjustments of these breakpoints are estimated against ad-
justed data after the first iteration. This process can be iter-
ated until no further adjustments are possible.

b. PHA2

Unlike PHA0 and PHA1, which are based on SNHT, PHA2

uses a penalized likelihood-based approach (Lund et al. 2023)
to identify multiple breakpoints by selecting among a set of
models containing all possible combinations of breakpoint
timing (Fig. 3). The penalized likelihood method gets its
name from using a loss function that is defined to maximize
data likelihood while penalizing, in this case, higher numbers
of breakpoints. Compared with SNHT-based approaches, pe-
nalized likelihood shows better skill in identifying breakpoints
(Shi et al. 2022b).

The computational cost of penalized likelihood approaches
to identifying breakpoints can be large because the number of
candidate models goes as 2n, where n is the number of time
steps. It follows that penalized likelihood approaches have
generally been applied in the climate sciences to single, short
time series including annual global and regional mean surface
temperatures (Li and Lund 2012; Beaulieu and Killick 2018;
Shi et al. 2022a), single-station annual precipitation (Li and
Lund 2012), annual sea ice coverage (Lund et al. 2023), and
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SNHT
(auto-corr 
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Penalized 
Likelihood

(revised 
genetic 

algorithm)

Standard 
Normal 

Homogeneity 
Test
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2. Pair-wise Breakpoint Identi cation

PHA0 PHA1 PHA2

1. Identify Neighbors

3. Attribute breakpoints to stations

4. Combine near-in-time breakpoints 

5. Estimate adjustment magnitude

6. Adjust data

FIG. 3. Schematic of PHA0,1,2. PHA0 steps that are also used by
PHA1,2 are in white boxes. PHA1 differs from PHA0 in the thresh-
old used in the standard normal homogeneous tests (SNHT), and
PHA2 uses penalized likelihood rather than SNHT in pairwise
breakpoint identification (black boxes). Both PHA1 and PHA2

allow for iterating between estimating and applying adjustments
such that breakpoints not adjusted in the first round of estimation
can be picked up later (dark arrows).
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the Pacific decadal oscillation index (Beaulieu and Killick
2018).

Application of a penalized likelihood approach to monthly
temperatures from the global network of weather stations is com-
putationally challenging because the network contains approxi-
mately 28000 stations that each span more than 1000 months
(Menne et al. 2018). Moreover, skillful breakpoint detection in-
volves comparing each station against 20–80 neighbors (Williams
et al. 2012). Approximate solutions can be obtained, however, us-
ing various genetic algorithm approaches (Killick et al. 2012; Li
and Lund 2012). A further issue is that the records we are dealing
with have missing data, and, to our knowledge, this issue has not
been accounted for in previous applications.

We model an interstation difference series DT as the sum-
mation of differences in climatic variability DC and differences
induced by breakpoints DD. For each monthly time step t,
where t5 1, 2, … , n, we have

DTt 5 DCt 1 DDt[1gt]: (3)

The term gt denotes an optional linear trend, and the full
version of model formulation containing this trend term is in
appendix C. Similar to Eq. (2), DCt is modeled as an order-1
autoregressive process:

DCt 5 aDCt21 1 et: (4)

The choice of an autoregressive order-1 process in modeling
temperatures follows wide use in the literature (e.g., Tingley
2012). For purposes of simplicity, we do not distinguish be-
tween random observational error and temperature variabil-
ity that is independent between stations.

To account for autocorrelation, DTt is prewhitened by
substituting Eq. (3) for time steps t and t2 1 into Eq. (4):

Yt 5 DTt 2 aDTt21 5 DDt 2 aDDt21 1 et: (5)

In the case where an interval of data is missing, prewhitening
uses the closest previous time step having data. To account for
the greater expected variance associated with multiple time
steps between data points, we first define kt 2 1 as the number
of missing data in a row before time step t. A prewhitened ver-
sion of Eq. (5) with stationary variance can be defined as

Yt 5
DTt 2 aktDTt2kt

Skt
5

DDt 2 aktDDt2kt
1 ∑

kt

i51
ai21et2i11

Skt
:

(6)

The summation denotes an accumulated random component
over unsampled time steps, and Skt 5

�������������������������(12 a2kt )/(12 a2)√
is a

factor used to scale the random component to have the same
variance as Eq. (5). For the initial condition, we have
Y1 5 DT1/Sk1 , where Sk1 5 S‘ 5

��������������
1/(12 a2)√

.
The vector DD defines the offset series segmented by

breakpoints. Following Li and Lund (2015), we represent DD
using Xb, where X is a design matrix with dimensionality
n 3 s. The term s is the number of segments or the number of

breakpoints plus one. Entries of X are zeros and ones, indicat-
ing in which segment a time step lies. Vector b indicates the
mean value in each segment and has the dimensionality s 3 1.
Given the timings of breakpoints (i.e., X), b (and likewise g)
is found using an ordinary least squares fitting.

The loss function of a model fit is

L 5 n ln(2p) 1 ∑
n

t51
ln(et) 1 ∑

n

t51

S2kt (Yt 2 Ŷ t)2
et

1 [2(s 2 1) 1 3]ln(n), (7)

where time steps with missing values are excluded from the
loss calculation. The error term et is quantified as S2kt times the
residual variance of the fitting. The first three terms of Eq. (7)
sum to 22 times the log likelihood of data, assuming et inde-
pendently and identically follows a Gaussian distribution. The
fourth term represents a penalty formulated according to the
Bayesian information criterion (Shi et al. 2022a). In case a
trend is also fitted, the penalty becomes [2(s 2 1) 1 4]ln(n).
Because b (and g) found using the ordinary least squares min-
imizes Eq. (7) conditional on the timing of breakpoints X, the
problem hence transforms into finding the combination of the
timing of breakpoints that minimizes Eq. (7).

Killick et al. (2012) and Li and Lund (2012) proposed specific
genetic algorithms for optimization. We implemented both ap-
proaches and find that both converge to the minimum loss
within 10 s for series shorter than 200 time steps. However,
when tested on synthetic series longer than 1000 time steps,
which is common for the data we focus on, their solutions gen-
erally do not converge within 5 min and, when terminated,
contain small-magnitude breaks that are nonoptimal. Such per-
formance is problematic given the large number of differences
we seek to evaluate. The existence of small-magnitude false
alarms is also unsatisfactory because false alarms in neighboring
stations reduce the number of homogeneous neighbors and,
thereby, prevents the estimation of adjustments present (Menne
and Williams 2009).

To overcome these issues, we introduce a multiparent algo-
rithm that improves speed and converges through breaking
long time series into shorter segments and treating each seg-
ment independently when generating descendants. More de-
tails of the multiparent genetic algorithm are in appendix C.
Our updated genetic algorithm can find the optimal solution
for a 100-yr time series within 20–60 s, significantly reducing
the computation time.

For purposes of estimating a trend, we run the penalized
likelihood breakpoint identification algorithm two times, once
with and once without a linear trend, and accept the one with
lower loss. Note that because PL avoids mis-identifying break-
points in long-term trends by optimizing globally, there is no
need to double check if each of the identified breakpoints rep-
resents long-term trends as in PHA0 and PHA1 (Fig. 3).

4. Applying PHA1 and PHA2 to simulations and
synthetic data

We assess the skill of our revised algorithms, PHA1 and
PHA2, relative to PHA0 using perturbed CMIP6 simulations
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and a synthetic data ensemble generated from a multivari-
ate Gaussian process (MGP). The revisions in both algo-
rithms improve skill. We also show that the reason for
improved skill is that the revised algorithms correctly iden-
tify more breakpoints while being subject to fewer false
alarms, or false alarms that are of small magnitude and,
thus, have little effect on long-term trends. Unless otherwise
stated, both PHA1 and PHA2 are run using a default param-
eter combination (Williams et al. 2012; see ensemble 1 in
Table B2 herein).

a. The performance of PHA1

To evaluate the performance of PHA1, we begin by compar-
ing the root-mean-square error (RMSE) of long-term tempera-
ture trends on the MGP-based synthetic ensemble (Fig. 4a).
After a single iteration, trend RMSE values in PHA1 are, on av-
erage, 0.328C century21, a value that is 0.038C century21 lower
than PHA0. The reduction in RMSE increases with the strength
of the autocorrelation, a, from zero when a is zero to 0.098C
century21 when a is 0.4. Running estimation and adjustment
multiple times results in another systematic reduction in RMSE

that is less dependent on autocorrelations. The reduction in
RMSE is, averaged over a from 0 to 0.4, 0.058C century21. A
third iteration reduces RMSE by less than 0.018C century21.

The improvement in skill shown by PHA1 is consistent
when applied to perturbed CMIP6 simulations (Fig. 4a).
When running PHA1 for one iteration, the reduction in
RMSE ranges from 0.018C century21 in CAMS-CSM1-0 (the
model with the lowest a) to 0.098C century21 in MIROC6,
the model with the highest a. The RMSE reduction across
CMIP6 models approximately follows a one-to-one relation-
ship with that of the MGP synthetic ensemble, indicating
that autocorrelation in temperature variability is a sufficient
explanation of differences in skill. Although autocorrelation
can be expected to vary across regions, the linear scaling of
RMSE with a indicates that the global average is an appro-
priate metric. Running PHA1 a second time further reduces
RMSE in the CMIP6 ensemble by an average of 0.048C
century21 but there is no significant change after a third it-
eration. These improvements suggest that PHA1 may have
better breakpoint identification under the regime of high
autocorrelation.

FIG. 4. Skill of the revised pairwise homogenization algorithms in recovering long-term trends. (a) Trend RMSE for the multivariate
Gaussian process (MGP; lines) and CMIP6 (markers) ensemble after running PHA1 for one (red), two (blue), and three (green) itera-
tions. Results from PHA0 (gray) are included for comparison. (b) As in (a), but for PHA2, which runs for two iterations (orange for the
first and light blue for the second). (c)–(l) Maps of trend error. (from left to right) Results for PHA0, PHA1 with one iteration, PHA2 with
one iteration, PHA1 with two iterations, and PHA2 with two iterations, respectively. The MGP synthetic case with (c)–(g) a 5 0 and
(h)–(l) a 5 0.4.
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To demonstrate this improvement in breakpoint identifica-
tion, we develop a scoring system by counting the number of
hits, misses, and false alarms. Specifically, a hit is if a break-
point is identified within a 2-yr epoch that centers on the tim-
ing of a true breakpoint. Breakpoints identified outside of an
epoch are considered false alarms, and epochs not identified
to have a breakpoint are misses. Changing the length of this
epoch to 1–3 years does not qualitatively change our results.

The improvement associated with running PHA1 for the
first iteration comes mainly from reducing false alarms. As a
increases, PHA0 achieves fewer hits and gives more false
alarms (Figs. 5a,f,k). Among the 8142 introduced breaks, the
number of hits decreases from 6334 with an a of 0 to 5715
when a is 0.4, whereas false alarms increase from 573 to 1972
(Figs. 5a,f,k). When a is 0, PHA1 behavior is the same as
PHA0 (Fig. 5b). As a increases, PHA1 makes fewer false
alarms than PHA0, with 185 fewer when a is 0.2 (Fig. 5g) and
930 fewer when a is 0.4 (Fig. 5l). Such a reduction is

consistent with accounting for autocorrelation, whereby a
higher T0 threshold limits SNHT mis-identifying climatic var-
iations as breakpoints. Interestingly, the higher threshold
does not lead to a decrease in hits or an increase in misses be-
cause, although there are fewer initially identified break-
points, the subsequent steps in the algorithm ultimately lead
to essentially no net change in hits and misses.

The improvements associated with running PHA1 for a sec-
ond iteration come mainly from increasing the number of hits.
Over all a values examined, PHA1 with two iterations makes
116 [78, 145] (95% confidence interval, hereinafter c.i.) more
hits than PHA0 (Figs. 5d,i,n). In this case, increasing the hit
rate also leads to an increase in the false alarms (Figs. 5d,i,n),
although the median absolute magnitude of additional hits is
larger at 0.288C, as compared to 0.148C for false alarms. As a
result, the effect of increasing the hit rate is advantageous for
purposes of reducing RMSE. Qualitatively similar decreases
in false alarm rates and increases in hit rates are also found

FIG. 5. Histograms of hits, misses, and false alarms. (left) Histograms of hits (thick solid), misses (thin solid), and false alarms (dashed)
using PHA0. (right) The differences between the results of PHA0 and one iteration of PHA1 (red) and PHA2 (orange), or two iterations
of PHA1 (blue) and PHA2 (light blue). Lines are offset for visibility. (from top to bottom) Rows show results averaged over three syn-
thetic analyses for a 5 0–0.1, a 5 0.15–0.25, and a 5 0.35–0.45, as well as a 17-model CMIP6 ensemble. The shadings indicate the range
across MGP ensemble members or CMIP6 models.
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when applying a second iteration of the algorithm to synthetic
data developed from CMIP6 simulations (Figs. 5q,s).

b. The performance of PHA2

PHA2 produces results that are slightly better than PHA1

with respect to trend RMSE (Fig. 4b). When a . 0.1, PHA2

with one iteration decreases trend RMSE by an average of
0.038C century21 more than PHA1 when applied to the syn-
thetic MGP-based synthetic data. A second iteration of PHA2

decreases trend RMSE relatively less than the second itera-
tion of PHA1, but the overall performance of PHA2 with two
iterations is still better than PHA1 by an average of 0.028C
century21. Application of PHA2 with two iterations to syn-
thetic data derived from CMIP6 simulations also gives results
that are slightly better in terms of RMSE than those of PHA1

(Figs. 4a,b).
The fact that PHA2 shows slightly lower RMSE than PHA1

is consistent with PHA2 tending to identify both more true
breakpoints and give fewer false alarms than PHA1 (Fig. 5).
Overall, PHA2 identifies 3% more breakpoints than PHA1

and give 60% fewer false alarms (Figs. 5c,h,m). The increase
in hits arises partly from the fact that PHA2 does not use adja-
cent segments to double check if initially identified break-
points indicate local trends (see step 3 in Fig. 3). PHA2,
therefore, keeps potential breaks that otherwise can be ex-
cluded as linear trends. The decrease in false alarms reflects
that the penalized likelihood method tends to reject small
breaks by optimizing globally. These results are consistent with
previous findings that penalized likelihood methods generally

identify breakpoints more accurately than likelihood ratio tests
such as SNHT (Shi et al. 2022b).

5. Analysis of GHCN monthly temperatures

Having established the skill of PHA1 and PHA2 using trials
on synthetic data, in this section, we apply them to monthly
air temperatures compiled within the Global Historical Cli-
matology Network (GHCNm) version 4 (Menne et al. 2018).
GHCNmV4 contains monthly mean temperatures from
27 868 stations (Fig. 6c). The number of stations increases
from the 1850s to the 1970s, plateaus from the 1970s to the
2000s, and declines thereafter (Fig. 6b). Records prior to
the 1900s are mainly from Europe, the United States, India,
coastal Australia, and Japan (Fig. 6d). More than 3000 sta-
tions have records longer than 100 years (Figs. 6a,e). Despite
the recent drop in total number of stations, the percentage of
sampled land area, calculated by counting 58 3 58 grid boxes,
remains approximately 85% throughout the past 60 years
(Fig. 6b). To perform an initial quality screening, we exclude
records having QC flags that identify possible issues including
duplication, outlier behavior, spatial inconsistency, and isola-
tion (Menne et al. 2018).

a. Breakpoint detection and temperature adjustments
under the default parameter combination

Under the default parameter combination (Table B2, en-
semble 1), applying PHA0 to the quality-controlled stations
leads to identification of 61 500 breakpoints between 1880 and
2023 (black in Fig. 7a). In comparison, NOAA’s homogenized

FIG. 6. Statistics of GHCNmV4. (a) Two-dimensional histogram of the starting and ending year of weather stations used in this study.
(b) Number of stations as a function of year (black; units are in thousands of stations) and the percentage of land area sampled (red).
Percentages are calculated after binning the station coverage to 58 3 58 grids. (c) Locations of 27 868 weather stations used in this study.
(d) The earliest sampled year in each 58 3 58 grid box. (e) The length of the sampled period at each grid box in years, i.e., the number of
monthly data points divided by 12.
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GHCNmV4 version (Menne et al. 2018) contains approxi-
mately 71 000 breaks from 1880 to 2016. We are unsure as to
the origin of the discrepancy in the number of reported
breaks, though one possible reason is that we do not use
metadata in our PHA analyses. The code for PHA0 and

detailed results are available in order to facilitate intercom-
parison going forward (see the data availability statement).
Compared with PHA0, PHA1 makes fewer false alarms in
synthetic analysis (Fig. 5). When applied to GHCNmV4,
PHA1 with the same parameter combination makes only

FIG. 7. Adjusted breakpoints in GHCNmV4. (a) Histogram of the magnitude of newly adjusted breakpoints using PHA1 for the first
(red), second (blue), and third-to-the-last (green) iterations. The estimation runs until fewer than 100 breakpoints are newly adjusted,
which we call iteration N. Shown results are for parameter combination 1 (thin line; our default parameter combination), mean over
50 members (thick line), and range (shading). Results for PHA0 (thin black) are shown for comparison. (b) As in (a), but for the rate of
adjustment as a function of year. (c),(d) As in (a) and (b), but for the PHA2 ensemble. (e) Histogram of the number of adjustments in
each station (black) for PHA0. Also shown is the 95% c.i. (shading) over a 500-member ensemble generated from binomial distributions,
assuming the occurrence of breakpoints within a station is temporally independent. (f) As in (e), but for PHA1 parameter combination 1
after one (red) and N iterations (green). (g) As in (f), but for PHA2.
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54 328 adjustments between 1880 and 2023 after running one
iteration of adjustment estimation (red in Fig. 7a). A second
iteration of PHA1 gives an additional of 9964 breaks (blue in
Fig. 7a).

In synthetic analyses, we find that running two iterations
would be sufficient because fewer than 10 adjustments are
made in further iterations. The required number of itera-
tions to maximally address the list of not-yet-adjusted break-
points should, however, increase with breakpoint frequency
and the degree to which breakpoints are concentrated in
space and time. In the application to GHCNmV4, which
may have a different breakpoint distribution from synthetic
analyses, we run the iteration until fewer than 100 break-
points are further adjusted and denote that number of itera-
tions as N. For PHA1, 4847 more breakpoints are adjusted in
five additional iterations for a total of seven iterations (green
in Fig. 7a).

Compared with PHA0 and PHA1, PHA2 has the advan-
tage of suppressing small breaks and giving fewer false
alarms (Fig. 5). Applied to GHCNmV4, PHA2 adjusts the
fewest breakpoints, with 44 788, 52 307, and 55 778 after run-
ning one, two, and seven iterations of adjustment estimation
(Fig. 7c).

Similar to Menne et al. (2018), PHA0, PHA1, and PHA2 de-
tect more negative than positive breakpoints, and the mean of
detected breaks is negative in each case (Figs. 7a,c). It follows
that continental mean temperature adjustments show positive
linear trends for both PHA1 and PHA2 over 1880–2022
(Fig. 8a), in this case both equaling 0.178C century21. Similar
to Fig. 1, continental and coastal-mean series are calculated
by initially binning station data into 58 3 58 monthly grids,
a conventional approach used in datasets like HadSST4
(Kennedy et al. 2019) and CRUTEM5 (Osborn et al. 2021).
Gridded data are then averaged globally, while weighting
each grid by the cosine of its latitude. Although PHA2 adjusts
fewer breakpoints than PHA1, they give highly consistent ad-
justments for continental mean temperatures. These trends
are also qualitatively consistent with the 0.168C century21

trend found using PHA0 but are slightly smaller than the
0.198C century21 trend reported for the GHCNmV4 product
homogenized by Menne et al. (2018) (Fig. 8a). Our estimates
of global adjustments using PHA0 and the Menne et al.
(2018) homogenization are highly consistent after the late
1980s, although they diverge and show an offset of up to
0.038C going back in time. One possible explanation is that
our homogenization does not rely on metadata, yet more

FIG. 8. Adjustments at global and regional scales. (a),(b) Continental-mean adjustments for (a) PHA1 and (b) PHA2 after one (upper
set of lines and shading), two (middle set) and N iterations (bottom set). Results are for parameter combination 1 (thin), mean over
50 members (thick), and range (shading). Results of PHA0 (black) and the homogenized GHVNmV4 by Menne et al. (2018, gray) are shown
for comparison. (c),(d) As in (a) and (b), but for coastal mean adjustments. (e)–(h) Long-term trend of 1880–2022 adjustments for
(e) GHCNmV4 homogenized by Menne et al. (2018), (f) PHA0, (g) PHA1 afterN iterations, and (h) PHA2 afterN iterations. A trend is calcu-
lated if a grid box has at least 10 decades that each have at least 1 month of data. Maps are all computed using parameter combination 1.
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detailed comparison appears a necessary undertaking in fu-
ture work.

Despite overall consistency among the different homogeni-
zation estimates, distinct features are present at various spa-
tial and temporal subsets. The spatial correlation between
century-long adjustment trends (Figs. 8e–h) estimated by
Menne et al. (2018) and PHA0 equals only 0.66. The spatial
correlation between PHA0 and PHA1 is somewhat larger at
0.76 and between PHA1 and PHA2 it equals 0.77. Whereas
global temperature adjustments appear consistent, for exam-
ple, with the RMSE between PHA1 and PHA2 annual adjust-
ments being 0.028C, the difference at the 58 3 58 regional
level is also larger, having an average RMSE of 0.268C. Addi-
tional future study at the regional level to identify regions and
sources of discrepancies appears worthwhile.

b. Comparison with station metadata

The frequency of detecting breakpoints is consistent through-
out the twentieth century. For PHA1, the first iteration adjusts
breaks at an average rate of once per 26 years within a given re-
cord (thin red curve in Fig. 7b). This rate increases to about
once per 20 years after running additional iterations. For PHA2,
the frequency of adjustment is lower at once per 31 years
for the first iteration and once per 25 years with additional
iterations (Fig. 7d). Some level of breakpoints is expected.
For example, the U.S. Historical Climate Network contains
measurements from liquid in glass thermometers in Steven-
son screens that were replaced by electronic resistance ther-
mometers known as the Maximum-Minimum Temperature
Sensor during the mid-to-late 1980s (Menne and Williams
2009; Williams et al. 2012).

To more specifically examine the rate and pattern of
breakpoints that are algorithmically identified, we compare
detected breakpoints with potential breaks suggested by avail-
able station history data compiled under the Historical
Observing Metadata Repository (HOMR; https://www.ncei.
noaa.gov/access/homr/). For each station, we record the tim-
ing when metadata suggest potential changes in temperature
measurement technique or location. Four categories are ex-
amined: segmented location information, recorded relocation,
segmented temperature information, and recorded instrument
changes. Station metadata are, however, limited. Among
27 868 GHCNmV4 stations, only about 10 000 stations have
metadata indicating at least one potential discontinuity
throughout their entire station history, and more than 99% of
these stations are from the United States or U.S.-affiliated
islands.

The rate at which available metadata indicates potential dis-
continuities varies with time, and the temporal evolution differs
across sources of information. For example, documented relo-
cation rates increase in the late 1930s, drop in the 1970s, and
again peak in the 1990s and 2000s (Fig. 9b). Documented in-
strument changes, however, are rare before they peak in the
1980s (Fig. 9d). We are unaware of whether changes in re-
ported rates among the records with station data reflect
changes in the actual rates of relocation and instrumenta-
tion change or, instead, the recording of such changes. For
this reason, we only focus on the rate at which metadata-
indicated discontinuities correspond with identified break-
points. Specifically, if a metadata-indicated discontinuity lies
within a 2-yr epoch of detected breaks, as defined in section 4,
we count it as a hit.

FIG. 9. Comparison with metadata. (a)–(d) Frequency of metadata-suggested potential breaks when using (a) seg-
mented location information, (b) recorded relocation, (c) segmented temperature information, and (d) recorded in-
strument changes. (e)–(h) Excess hit rates for PHA0 (black) and for PHA1 (dark green) and PHA2 (light green) after
estimating adjustments with N iterations. For the default parameter combination, N5 7 in both cases. The excess rate
is the hit rate relative to a null hypothesis where metadata indicated discontinuities are randomly placed in time (see
text for more details).
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We formulate a null hypothesis for hit rate by randomizing
metadata adjustments. Specifically, the null is constructed by
randomly shuffling the timing of metadata-indicated disconti-
nuities within each station, while keeping both the number of
metadata-indicated discontinuities and the location of PHA-
detected breaks unchanged. For each randomization, we
count the rate of shuffled breakpoints falling into an epoch as-
sociated with a PHA-detected break point. Repeating this
process 500 times gives a null distribution against which the
observed hit rate of PHA is assessed. A hit rate significantly
higher than the null distribution, or what we call excess hit
rate being greater than zero, indicates that PHA is skillful.
Note that in a limit where breakpoints are defined at every
time step PHA cannot be skillful because the null results
would have a 100% hit rate.

The hit rate of metadata-indicated changes with PHA-
identified breakpoints is significantly higher than our null distri-
bution for each category of metadata (P , 0.001), indicating the
skill of PHA-based methods. Averaging across stations and
PHA approaches, the correspondence of metadata-indicated
changes with breakpoints is 1%, 15%, 4%, and 11% higher than
adjustments with random timing for segmented location informa-
tion, recorded relocation, segmented temperature information,
and recorded instrument changes, respectively (Figs. 9e–h). Mov-
ing stations and changing measurement approaches are, appar-
ently, more likely to result in identifiable breakpoints. Both
PHA1 and PHA2 give higher excess hit rates than PHA0 for all
metadata types, confirming the skill of our revisions to PHA0.
Whereas PHA2 is better at catching instrumental changes, PHA1

is slightly better for relocation.
Using a homogenization algorithm appears important for

uniform treatment of data, especially given the unequal dis-
tribution of metadata across nations and that more than
90% of breakpoints identified by PHA1 and PHA2 are not
associated with an event indicated by relocation or instru-
mental changes. In the United States, where most metadata
are available, rates of relocation or instrumental change re-
ported in the metadata range from 2% yr21 between 1900 and
1950 to 8% yr21 between 1980 and 2023 (Figs. 9b,d), whereas
the ratio of PHA-identified breakpoints between these two
intervals remains relatively stable at about 4%–5% yr21

(Figs. 7b,d).
Although the rate of PHA-detected breakpoints is stable in

time, stations with one breakpoint are more likely to be asso-
ciated with another break. To demonstrate this point, we
compare the number of breaks per station between GHCN
and a null hypothesis assuming the occurrence of breakpoints
is independent across time and stations. To construct this null
hypothesis, we draw, for each station, a number of break-
points from a binomial distribution B(pB, nB), where the suc-
cess rate or average percentage of years having breaks is pB
and nB is the number of years with data. We repeat the pro-
cess 500 times to obtain a distribution assuming independent
breakpoint occurrence. Raw GHCN data homogenized using
either PHA0 or PHA1 have significantly more stations with-
out breaks, fewer stations with fewer than six breakpoints,
and more stations with seven or more breakpoints (Figs. 7e,f).
PHA2 adjusts fewer breakpoints in general but still shows a

similar structure in the deviation from binomial processes
(Fig. 7g). Possible explanations include certain stations being
subject to repeated moves or instrument updates or that some
discontinuities detected by PHA0 are associated with prob-
lematic segments that recover later in time, in which case
breakpoints tend to appear in pairs.

c. Uncertainty quantification

We use an ensemble method to quantify parametric uncer-
tainties in PHA1 and PHA2 associated with errors in the tim-
ing of identified breakpoints and the magnitude of required
adjustments, similar to Williams et al. (2012). That is, in addi-
tion to the default parameter combination, we perturb all pa-
rameters in the algorithm (Table B1). Note that randomized
parameter combinations tend to give higher error rates, often
because of conservative breakpoint adjustments that relax the
magnitude of trend adjustments toward zero (Williams et al.
2012).

To account for this potential bias, we first run a 300-member
randomized parameter ensemble on synthetic data from the
multivariate Gaussian process with a 5 0.2, the median across
CMIP6 models, for both PHA1 and PHA2. The resulting trend
RMSE after running adjustment estimation two times ranges
from 0.258 to 2.718C century21, while the default combination
gives an average RMSE of 0.268C century21. The high error
for some combinations is associated with insufficiently adjust-
ing breaks, which is typically associated with SNHT either
identifying too many or too few breakpoints in the initial
screening. Whereas using too few initial breakpoints naturally
results in fewer adjustments, too many initial breakpoints gives
insufficient numbers of homogeneous neighbors required for
estimating adjustments. We subset the 50 combinations from
300-member PHA1 and PHA2 ensemble that give the lowest
RMSE (Tables B2 and B3). The fact that both PHA1 and
PHA2 generate qualitatively similar results in terms of both
continental-mean adjustments (Fig. 8a) and excess hit rates
(Fig. 9) allows for pooling the two ensembles together to gen-
erate a 100-member LSAT ensemble. The trend RMSE of the
100 combinations ranges from 0.258 to 0.308C century21 when
applied to the Multivariate Gaussian synthetic data. When
applied to GHCN, adjusted temperatures in each member cor-
respond to the last iteration}iteration N}in which fewer than
100 new adjustments are made.

Applying the trimmed parameter ensemble to GHCNmV4,
we detect, respectively, 46 287 [37 374, 64 084] (median and
range across 100 parameter combinations), 54 370 [45050,
75 461], and 58 033 [49 082, 81 125] breakpoints after estimat-
ing adjustments for one, two, and N iterations (Figs. 7a,b).
For the final adjustments after N iterations, the number of ad-
justed breaks are 65916 [56 400, 81125] for 50 PHA1 members
and 56168 [49 082, 62067] for PHA2 members. The mean
magnitude associated with adjusted breakpoints ranges from
20.078 to20.048C. Thus, accounting for timing and magnitude
uncertainties provides support that the raw GHCNmV4 data
underestimate long-term trends in temperature warming at
the global scale. Global-average adjustments have 1880–2022
trends ranging from 0.128 to 0.208C century21 (Figs. 8a,b), and
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this range is consistent between the PHA1 ([0.12, 0.20]) and
PHA2 ([0.12, 0.18]) subensembles.

Our ensemble for continental mean temperatures (Figs. 8a,b) is
consistent with the previously published homogenized GHCNmV4
dataset (Menne et al. 2018) at the global scale, but the adjustments
found in the previously published GHCNmV4 dataset for coastal
stations are more negative than our ensemble, especially with re-
spect to the PHA2 subensemble over the early twentieth century
(Figs. 8c,d). In a recent paper, we showed that discrepancies exist
between SSTs and LSATs near coastlines during the early 1900s
(Chan et al. 2023) and that LSATs could be used to correct SSTs.
An implication is that using the previously published homogenized
GHCNmV4 dataset leads to an SST trend that is approximately
0.058C century21 higher than indicated by our LSAT ensemble.

6. Discussion and conclusions

To further improve the detection and adjustment of discon-
tinuities in historical temperature records from weather
stations, we propose two revised pairwise homogenization al-
gorithms that account for autocorrelation in time series. One
algorithm, PHA1, involves minor modifications of an existing
algorithm, PHA0 (Menne and Williams 2009), to detect break-
points in the presence of autocorrelated temperature data.
The other algorithm, PHA2, makes a larger change to PHA in-
volving replacing a standard normal homogeneity test (SNHT)
for breakpoints with a penalized likelihood method.

Application to perturbed CMIP6 simulations and synthetic
data with different levels of autocorrelation indicates that
both PHA1 and PHA2 identify more breaks and produce

fewer false alarms than PHA0, implying higher skill in recov-
ering long-term temperature trends. Moreover, PHA2 sur-
passes PHA1 in identifying true breaks and minimizing false
alarms, thereby further improving the long-term-trend esti-
mate slightly. That said, PHA1 offers greater computational
efficiency, requiring only about 0.1 s for a 600-time-step series,
compared to about 10 s for PHA2. When applied to the ho-
mogenized temperatures in GHCNmV4, both PHA1 and
PHA2 show highly consistent global LSAT adjustments and
comparable skill when evaluated against events recorded in
metadata. Given PHA1’s minimal changes to the benchmark
PHA0 and PHA2’s slight accuracy advantage, we integrate
both in our ensemble of improved land surface temperature
estimates.

Applying PHA1 and PHA2 to GHCNmV4 station tempera-
tures increases the 1800–2022 trend in continental mean tem-
perature by 0.16 [0.12, 0.19]8C century21 (mean and 95% c.i.)
relative to unhomogenized trends. We estimate that continen-
tal mean temperature over 2010–22 was 1.65 [1.62, 1.69]8C
(mean and 95% c.i.) warmer than the 1880–1900 average. Un-
certainty is quantified using a 100-member ensemble that ac-
counts for model uncertainty through using PHA1 and PHA2

approaches and for parametric uncertainties within each
method. The code and detailed results of our algorithm are
publicly accessible at https://doi.org/10.7910/DVN/AA0OM0.

We compare our continental mean temperatures with three
existing estimates (Fig. 10) from NOAA homogenized
CHCNmV4 using PHA0 (Menne et al. 2018), CRUTEM5
(Osborn et al. 2021), and Berkeley Earth (Rohde et al.
2013a). To facilitate direct comparison, we average only over

FIG. 10. Comparison of continental mean temperature anomalies with existing estimates. (a) Homogenized temperatures using our re-
vised algorithm (black), homogenized GHCNmV4 by Menne et al. (2018) (blue), and raw GHCNmV4 (gray). Anomalies are relative to
the mean over 1982–2014. Shading shows the 95% confidence interval over the 100-member ensemble. Coverage uncertainties are not ac-
counted for. Shown in the inset panel in the upper-left corner is the difference from the central estimate of our adjusted temperatures.
(b) As in (a), but for comparison with Berkeley Earth Temperature (red). Berkeley temperature is masked to have the same data cover-
age as GHCNmV4. (c) As in (a), but for CRUTEM5 (green). The green shading shows the 95% c.i. over a 200-member ensemble derived
from subtracting HadSST4 (Kennedy et al. 2019) from non-infilled HadCRUT5 (Morice et al. 2021).
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grid boxes where all products have observations after regrid-
ding to the CRUTEM5 58 3 58 resolution. Although similar
in most respects, NOAA homogenized GHCNmV4 using
PHA0 shown significantly greater warming between 1880–
1900 and 2010–22 than our 100-member ensemble at 1.708C
(Fig. 10a). Such a result is consistent with our previous finding
that the global-mean adjustment by Menne et al. (2018),
0.198C century21, is on the high end of our PHA ensemble,
[0.12, 0.19] (95% c.i.).

CRUTEM5 indicates less warming since the 1880s than our
ensemble of only 1.50 [1.27, 1.72]8C (Fig. 10c). This reduced
warming may reflect that CRUTEM5 used homogenization ef-
forts by national or regional initiatives, as opposed to a global
statistical algorithm (Osborn et al. 2021). Note that CRUTEM5
makes an ensemble characterization of uncertainties publicly
available that, in addition to accounting for parametric uncer-
tainty, also accounts for sampling and measurement errors
within individual grid boxes and instrumental exposure biases
from nonstandard screening (Osborn et al. 2021), leading to a
larger 95% confidence interval, particularly prior to the 1930s.

The Berkeley Earth temperature estimate is consistent with
our ensemble from 1880 to 1940 (Fig. 10b), indicating a warm-
ing of 1.668C over 2010–22 relative to 1880–1900. Berkeley
Earth detects breakpoints using a method similar to steps 1–4
of PHA0, but rather than explicitly adjusting temperatures, re-
cords are split at breakpoints and treated as distinct when cal-
culating temperature anomalies relative to a climatological
period (Rohde et al. 2013a).

We suggest that our PHA1 and PHA2 ensemble gives the
most credible estimate of warming since the 1880s. This credi-
bility is supported by PHA1 and PHA2 outperforming PHA0

in synthetic trials and consistency of our ensemble with the
point estimate provided by the partially distinct methodology
of Berkeley Earth. It will be useful to integrate PHA1 and
PHA2 results with ongoing work to combine land and sea sur-
face temperature datasets (e.g., Cowtan et al. 2018; Chan et al.
2023) as well as to infill for missing regions (e.g., Kadow et al.
2020; Meinshausen et al. 2022) in order to obtain global esti-
mates of temperature variability.
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APPENDIX A

Developing Synthetic Data

We develop synthetic data using both CMIP6 simulations
and draws from a multivariate Gaussian process. For CMIP6,
we interpolate simulated temperatures using a bilinear method
to locations of weather stations and add a random number of
breakpoints with random timing and random magnitude. The
number of breakpoints for a given time series nb is specified
by drawing a random number from a normal with a mean of
3 and standard deviation of one, truncating values to range
between 0 and 6, and then rounding. We impose break at an
average rate of 3 (50 years)21 and assign magnitudes to each
breakpoint that are randomly drawn from N(20.05, 1). The
rate and distribution of breakpoints are comparable to those
found by PHA0 as well as those reported in Menne et al.
(2018). Note that the nonzero centered distribution introduces
a bias in long-term trends as is generally inferred (Fig. 8).

Synthetic temperatures that are correlated in space and time
are generated using an AR-1 multivariate Gaussian process:

Tt 5 aTt21 1 et: (A1)

Vector Tt represents temperatures at time t in a network of
weather stations, for which we choose continental U.S. sta-
tions in GHCNmV4. We run Eq. (A1) for 700 time steps
and discard the first 100 warm-up steps. Varying the system
memory a permits controlling the autocorrelation of gener-
ated time series and their differences.

The noise process et follows a multivariate Gaussian
distribution:

et ; N(0, S), (A2)

where S is a covariance matrix generated according to
Sij 5 (1 2 a)2 exp(2|Dd|/t). The variable |Dd| is the arc
length, in degrees, between stations i and j, and t is the de-
correlation distance, for which we choose 58, approximately
half of the Rossby deformation radius for the midlatitude
atmosphere. The variance of the noise innovation is a de-
creasing function of a such that the expected variance of T
is constant for a between 0 and 1.

The same seeding of random numbers is used for all syn-
thetic experiments, such that identical breaks are intro-
duced to both CMIP6 models and synthetic data generated
from a multivariate Gaussian process. Differences between
the CMIP6 and multivariate Gaussian process results in-
clude that spatial correlation decays more slowly at small
distances across the CMIP6 temperatures.
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APPENDIX B

Revised Pairwise Station Homogenization
Algorithm (PHA1)

A step-by-step description of PHA1 is provided for pur-
poses of repeatability. PHA1 generally follows that of Menne
and Williams (2009, hereafter MW09) and Williams et al.
(2012, hereafter WMT12). We specifically note below where
our approach differs from MW09 and WMT12.

a. Identify neighbors

Neighboring stations are first identified. For each target
station, we first identify the nearest “NEIGH CLOSE”
(100/120/150/200) stations. Numbers in the parentheses de-
note possible values of the algorithm parameter inside quo-
tation marks, and the number in boldface is our default value,
which is also listed as ensemble member 1 in Tables B2 and
B3. The distance, “NEIGH DIS”, is evaluated using one of
the following metrics: difference correlation (1 diff), Pearson’s
correlation (corr), or physical distance on the sphere (near).
Difference correlation is the correlation between month-
to-month temperature changes, a metric that helps diminish
the effects of abrupt breaks in determining the correlation
(Peterson et al. 1998).

Following MW09, seasonal cycles are removed by subtract-
ing the mean temperature over the entire period for each sta-
tion before evaluating correlations. To guard against small
sample sizes giving spurious correlations, stations having
fewer than “NUM4COV” (60/120/180) in common with
the target station are excluded. When evaluating correla-
tions (1 diff and corr), we also exclude stations whose cor-
relations are smaller than “CORR LIM” (0.1/0.3/0.5) with
the target station. When using spherical distance (near),
we still remove seasonal cycles but do not use the “CORR
LIM” parameter.

Among the eligible neighboring stations meeting the dis-
tance and correlation requirements, the top “NEIGH FINAL”
(40/60/80) are first selected. Our algorithm then loops over the
remaining stations in descending order. If adding a remaining
station increases the number of neighbors for any month that
has fewer than “MIN STNS” (5/7/9) neighbors, the least corre-
lated or the farthest station is replaced. Difference monthly

temperature anomalies between the target station and each se-
lected neighbor are calculated.

b. Identify breakpoints from pairwise difference series

For each difference series, we apply an iterative standard
normal homogeneity test (SNHT). The test is performed itera-
tively between a splitting phase, where the algorithm tests
whether each segment of time series contains any further
breakpoints, and a merging phase, where the algorithm com-
bines consecutive segments and excludes the identified break-
point in middle if no breakpoints are identified by SNHT in
the combined time series. This process repeats until no more
breakpoints can be identified or the number of iterations
reaches ten. Unlike MW09 and WMT12, which used the 95%
confidence level estimated from white noise series, the revised
algorithm uses “SNHT THRES” (80%/90%/95%) estimated
from autocorrelated random series.

To estimate updated SNHT thresholds, we first generate
n-sample red noise series using an order-one autoregressive
process, xt 5 axt21 1 et, where a is the memory of the sys-
tem, for which we loop over 0 to 0.4 at an increment of
0.01, and n is the length of time series ranging between 5
and 3500. For each combination of a and n, 50 000 random
series are generated and then normalized to zero mean and
unit variance.

For each synthetic series, we calculate lag-1 autocorrela-
tion a and the SNHT test statistics, T0 5max1#y,n[yz21 1
(n2 y)z22] (Alexandersson 1986). Here z1 and z2 are, re-
spectively, the mean over the two periods before and after
time step y , and the calculation loops y over 1 to n 2 1 to
find the maximum value. For each n value, we calculate the
revised “SNHT threshold” as the 80%, 90%, and 95%
quantiles of T0 within 0.1 incremental bins of a.

When performing SNHT using revised thresholds, we first
evaluate a for each difference series using a sliding window
of 100 months, or one-third of the time series if shorter
than 100 months. We take the median value of the a values
sampled across the time series. a is updated in every split-
ting phase of SNHT, and windows overlapping with any
detected breakpoints are discarded in the calculation of me-
dian values. This method reduces bias in autocorrelation
estimates due to artificial discontinuities. The length of the

TABLE B1. Parameters in the revised pairwise homogenization algorithms.

Parameter Meaning

ADJ EST Methods to determine adjustments from multiple pairwise estimates
ADJ COMB Minimum length of data period that can be adjusted
ADJ MINLEN Minimum number of months on two sides of breakpoints to estimate adjustments
ADJ MINPAIR Minimum number of nonproblematic neighbors to estimate adjustments
AMPLOC PCT Confidence window used to conflate breakpoints
CORR LIM Minimum correlation to be identified as a neighbor
MIN STNS Minimum number neighbors with coincident data
NEIGH CLOSE Maximum number of neighboring series to consider
NEIGH DIS Similarity matrix used for ranking neighbors
NEIGH FINAL Final (maximum) number of neighbors per station
NUM4COV Minimum number of overlapping months for evaluating correlation
SNHT THRES Confidence level of the standard normal homogeneous test (SNHT)
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TABLE B2. Parameters for individual members of the PHA1 ensemble. Member 1 is the default parameter combination, whose
values are from Williams et al. (2012). Members 2–50 are from randomly perturbing PHA parameters and then trimmed according to
trend RMSE in synthetic analyses.

Ensemble number

1 2 3 4 5 6 7 8 9 10 11 12 13

ADJ EST med mean mean mean Qavg mean mean mean Qavg med Qavg mean med
ADJ COMB 24 24 24 24 24 24 24 24 24 24 24 24 24
ADJ MINLEN 18 24 18 24 24 24 18 18 18 24 18 24 18
ADJ MINPAIR 2 4 2 5 5 5 3 3 4 3 3 2 2
AMPLOC PCT 92.5 92.5 95 95 95 90 90 92.5 95 92.5 95 92.5 90
CORR LIM 0.1 – – 0.5 – – – – – – 0.3 – –

MIN STNS 7 9 5 5 7 5 7 9 9 5 9 7 9
NEIGH CLOSE 100 100 150 100 150 100 200 120 150 100 100 150 150
NEIGH DIS 1 diff near near 1 diff near near near near near near 1 diff near near
NEIGH FINAL 40 40 40 40 40 40 40 40 40 40 40 40 40
NUM4COV 60 120 60 60 120 120 60 180 60 180 180 120 120
SNHT THRES 90 95 95 95 95 80 95 90 95 95 95 80 95

14 15 16 17 18 19 20 21 22 23 24 25 26

ADJ EST med Qavg med med med Qavg med Qavg med med Qavg mean mean
ADJ COMB 24 24 24 24 24 24 24 18 24 24 18 18 18
ADJ MINLEN 24 24 18 18 24 24 18 18 18 18 18 18 18
ADJ MINPAIR 4 4 4 5 2 4 3 4 3 4 3 5 4
AMPLOC PCT 95 90 90 95 90 92.5 92.5 90 90 90 90 95 92.5
CORR LIM 0.1 – 0.5 – – – 0.1 – – 0.1 – – 0.3
MIN STNS 9 9 7 9 9 9 7 9 7 5 7 5 9
NEIGH CLOSE 200 150 100 120 200 100 200 120 100 200 200 100 100
NEIGH DIS 1 diff near 1 diff near near near 1 diff near near 1 diff near near 1 diff
NEIGH FINAL 40 40 40 40 40 40 40 40 40 40 40 40 40
NUM4COV 120 120 120 180 60 180 60 60 120 60 120 120 60
SNHT THRES 80 90 90 90 90 80 80 95 80 90 90 80 95

27 28 29 30 31 32 33 34 35 36 37 38 39

ADJ EST mean Qavg mean med Qavg med Qavg med med med med Qavg Qavg
ADJ COMB 24 18 18 18 24 24 18 24 18 24 24 24 24
ADJ MINLEN 24 18 18 18 24 24 18 18 18 24 24 24 24
ADJ MINPAIR 5 3 2 4 2 4 5 5 2 2 5 2 2
AMPLOC PCT 90 92.5 95 95 95 90 95 92.5 92.5 95 95 95 95
CORR LIM – – 0.3 – 0.3 – – – – – – – 0.3
MIN STNS 7 7 9 9 7 7 9 9 5 7 5 9 5
NEIGH CLOSE 100 200 100 200 100 120 120 150 100 120 100 200 150
NEIGH DIS near near 1 diff near 1 diff near near near near near near near 1 diff
NEIGH FINAL 60 40 40 40 60 60 40 60 40 60 60 60 60
NUM4COV 60 180 60 60 180 60 120 60 60 60 60 60 60
SNHT THRES 90 95 80 80 90 90 90 90 90 80 80 80 80

40 41 42 43 44 45 46 47 48 49 50

ADJ EST med med Qavg mean med med Qavg Qavg Qavg mean Qavg
ADJ COMB 24 24 24 24 24 24 24 24 24 24 24
ADJ MINLEN 18 18 24 18 18 24 24 24 24 18 18
ADJ MINPAIR 2 2 3 4 2 2 5 2 2 2 4
AMPLOC PCT 90 95 95 95 90 95 90 95 92.5 90 95
CORR LIM – – – 0.1 0.3 – 0.1 0.5 – 0.5 0.3
MIN STNS 9 7 5 5 7 5 5 5 5 5 5
NEIGH CLOSE 120 150 100 200 200 120 150 150 100 100 100
NEIGH DIS near near near corr 1 diff near corr corr near 1 diff corr
NEIGH FINAL 60 60 60 40 60 60 40 40 60 60 40
NUM4COV 60 60 60 180 180 180 180 120 180 60 180
SNHT THRES 95 90 80 90 80 80 95 95 80 90 90
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sliding window could influence the estimation of a (Gallagher
et al. 2022), but synthetic tests for 1000-step times series and
alpha over 0–0.4 indicate that estimates of a are only slightly
biased by 20.01 to 20.02 for both window lengths equaling
to 100 and 200 time steps (Fig. B1). The slight negative bias
arises because we use a 90% threshold in the SNHT test,
such that large true variability would be misidentified as
breakpoints and excluded from autocorrelation estimates.
That said, this bias is small and does not seem to depend
strongly on the window length. The fact that consistent re-
sults are found in synthetic trials using PHA2 also indicates
that this approach is adequate. SNHT thresholds not explic-
itly precomputed for a given n and a are estimated using bi-
linear interpolation.

After identifying potential breaks using SNHT, a check
is made as to whether each identified breakpoint reflects
breaks or long-term trends using a Bayesian information
criterion approach (BIC; Schwarz 1978). Specifically, for a
potential breakpoint, i, whose timing is ti, we take the two
segments on which it neighbors and calculate the BIC for
seven different models. In addition to the five candidate
models tested in MW09, PHA1 also tests two other
models:

yt 5
m1 1 k1t 1 et ti21 , t # ti

m2 1 et ti , t # ti11

,

{
(B1)

yt 5
m1 1 et ti21 , t # ti

m2 1 k2t 1 et ti , t # ti11

:

{
(B2)

We fit models using the Theil–Sen estimator (Theil 1950),
which uses the median value of slopes between every possible
pair of data to obtain a robust fitting that is less affected by
outliers. After fitting each model, we calculate BIC following

BIC(p) 52n′ log
SSE
n′

( )
1 log(n′)p, (B3)

where p is the number of parameters in a model, n′ is the
number of time steps from ti21 1 1 to ti11, and SSE is the sum
of squared error for a particular model fit. A breakpoint is con-
firmed if any model other than a straight line has the lowest
BIC. Otherwise, we exclude this point from further analysis.
For each confirmed breakpoint, we record estimates of its nor-
malized magnitude, m̂ 5 (m2 2m1)/

�����������������
SSE/(n′ 2 1)√

.
Note that for PHA2, (Table B3) this step of breakpoint

detection is replaced by a genetic algorithm-based penalized
likelihood approach (GAPL; details in appendix C).

FIG. B1. Skill of the moving-window autocorrelation estimator. Skill is evaluated for a from
0 to 0.4 with an increment of 0.1. For each a, we randomly generate 1000 synthetic series that
each has 1000 time steps. Breakpoints with random timing and random amplitudes are then in-
troduced following the approach in appendix A. Whereas lag-1 autocorrelation of the unper-
turbed series is calculated to indicate an unbiased estimate (black box plot), three estimates of a
are obtained from the perturbed series, which are 1) the moving-window method with a window
length of 100 time steps (red box), 2) the moving-window method with a window length of
200 time steps, and 3) lag-1 autocorrelation over the entire perturbed series (green box). For the
box plot, the thick bar shows the median, the box indicates the interquartile range, and the
whiskers show the 95% c.i.
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c. Attribute breakpoints to stations

Breakpoints confirmed in a difference series can be due
to breaks in either station involved. As a result, we follow
PHA0 to attribute breaks to individual stations using a
count-down method. For each station at each time step, we
count the number of neighbors with which a target station

shows a break. When two breaks involve stations that are
mutually targets and neighbors, we exclude one of the
target–neighbor pairs to avoid double counting. After form-
ing a list of breakpoint counts, the station and time step
with the highest count is associated with a breakpoint and
that count is reset to zero. Counts of neighboring stations

TABLE B3. As in Table B2, but for parameter combinations for the PHA2 ensemble.

Ensemble number

1 2 3 4 5 6 7 8 9 10 11 12 13

ADJ EST med mean Qavg mean mean mean mean mean med mean med med Qavg
ADJ COMB 24 24 24 24 24 24 24 24 24 24 24 24 24
ADJ MINLEN 18 24 24 18 24 18 24 18 24 24 18 24 24
ADJ MINPAIR 2 4 2 3 3 4 2 5 5 3 2 5 4
AMPLOC PCT 92.5 92.5 90 90 90 95 90 92.5 92.5 95 95 92.5 90
CORR LIM 0.1 – – – 0.1 0.1 0.3 – – – 0.5 – 0.5
MIN STNS 7 7 9 9 7 5 5 9 5 9 5 7 9
NEIGH CLOSE 100 200 100 150 150 200 120 120 100 200 100 100 150
NEIGH DIS 1 diff near near near 1 diff 1 diff 1 diff near near near 1 diff near 1 diff
NEIGH FINAL 40 40 40 40 40 40 40 40 40 40 40 40 40
NUM4COV 60 120 180 180 60 60 60 120 60 120 60 60 60

14 15 16 17 18 19 20 21 22 23 24 25 26

ADJ EST med Qavg Qavg med med Qavg med med med Qavg med mean med
ADJ COMB 24 24 24 24 24 24 24 24 24 24 24 24 24
ADJ MINLEN 24 24 18 24 24 18 24 18 24 24 24 18 24
ADJ MINPAIR 3 5 5 3 3 2 5 3 5 2 5 3 3
AMPLOC PCT 92.5 95 95 92.5 92.5 90 90 95 92.5 90 95 90 92.5
CORR LIM 0.3 0.3 – 0.5 – 0.1 0.1 – – – – – –

MIN STNS 9 9 5 5 5 9 5 7 5 5 9 9 5
NEIGH CLOSE 150 120 150 200 100 200 120 120 200 100 100 120 120
NEIGH DIS 1 diff 1 diff near 1 diff near 1 diff 1 diff near near near near near near
NEIGH FINAL 40 40 40 40 40 40 40 40 60 60 40 60 60
NUM4COV 180 180 60 180 60 120 120 180 180 180 120 180 60

27 28 29 30 31 32 33 34 35 36 37 38 39

ADJ EST Qavg mean med med mean med mean mean med med mean mean Qavg
ADJ COMB 24 24 24 24 24 24 24 24 24 24 18 24 24
ADJ MINLEN 24 18 18 24 24 18 24 18 18 24 18 24 24
ADJ MINPAIR 2 3 4 2 5 2 3 4 3 5 5 5 3
AMPLOC PCT 90 95 90 95 92.5 90 92.5 95 95 92.5 95 95 95
CORR LIM – – – – 0.3 – 0.3 – – – – 0.3 –

MIN STNS 9 9 7 9 5 5 5 9 9 5 9 9 9
NEIGH CLOSE 200 200 150 150 150 100 150 150 200 100 200 200 150
NEIGH DIS near near near near 1 diff near 1 diff near near near near 1 diff near
NEIGH FINAL 60 60 60 60 60 60 60 60 60 60 40 60 60
NUM4COV 180 60 120 60 60 60 120 120 180 120 60 120 60

40 41 42 43 44 45 46 47 48 49 50

ADJ EST med med med Qavg med mean mean mean Qavg med median
ADJ COMB 24 24 18 24 24 18 18 18 18 18 18
ADJ MINLEN 24 24 18 18 24 18 18 18 18 18 18
ADJ MINPAIR 5 4 3 4 5 4 4 3 4 2 3
AMPLOC PCT 92.5 95 92.5 95 90 92.5 92.5 92.5 95 95 90
CORR LIM 0.3 0.1 0.5 0.5 0.1 – – 0.3 – – –

MIN STNS 9 9 7 5 9 7 5 7 5 7 5
NEIGH CLOSE 200 120 150 120 100 100 120 150 100 150 100
NEIGH DIS 1 diff 1 diff 1 diff 1 diff 1 diff near near 1 diff near near near
NEIGH FINAL 60 60 40 60 60 40 40 40 40 40 40
NUM4COV 180 120 180 180 60 180 120 120 120 120 120
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that were originally associated with this breakpoint are de-
creased by one. The procedure is repeated until no count is
greater than one, reflecting the fact that we require two
neighboring stations at a time step to confirm a target as
the source of a break.

The presence of missing data makes the process above
more complicated. Here we follow an approach imple-
mented in the FORTRAN code associated with WMT12
but that appears to not yet have been documented in the
literature. If a breakpoint in, for example, station 1 occurs
at a time step corresponding to missing data in station 2,
the pairwise algorithm will identify a breakpoint at the tim-
ing of the nearest previous time step with data in station 2.
For purposes of tracking, we assign universal IDs (UIDs)
to individual breakpoints. If there are missing data follow-
ing a detected breakpoint in a record or a neighbor from
which a difference series is computed, we mark all subsequent
time steps with missing data under the same UID. After attrib-
uting a breakpoint, all time steps sharing the same UID are de-
creased by one.

d. Combine near-in-time breakpoints

The timing of breakpoints can be uncertain, and multiple
breakpoints can be found in succession when only a single
breakpoint exists. To address this issue near-in-time break-
points are combined to account for timing errors. We fol-
low Menne and Williams (2009), who estimated the timing
error by realizing 100-sample random time series with
breakpoints of different magnitudes added at the 50th time
step. They performed SNHT to each of the synthetic series
and calculated the error of the timing of identified break-
points, which decreases with the magnitude of breaks. Al-
though timing error may also depend on autocorrelation,
we keep this estimation for simplicity.

For each station, each attributed breakpoint is assigned
with an epoch, whose length is the 90%/92%/95% interval
of timing error, “AMPLOC PCT”. The timing with the
most neighbors is first marked as occupied. The epoch of
the breakpoint with the second highest number of neigh-
bors is then checked for overlap with occupied timings. If
overlapping, the breakpoint is combined with the nearest
occupied timing. Otherwise, the timing of this breakpoint is
set as occupied, and the process continues until all break-
points are checked.

Following WMT12, we also combine breakpoints when
they are within “ADJ COMB” (18/24) months. Specifically,
the latter breakpoint is removed along with data in between
the two breakpoints.

e. Estimate adjustment magnitudes

Steps 1–4 identify breakpoints in a network of tempera-
ture series, and it remains to estimate the adjustment asso-
ciated with each breakpoint. We estimate the required
adjustments for each breakpoint independently. Taking
breakpoint i for station S as an example, we first subset the
time interval ti21 1 1 to ti11. If a neighbor of station S does
not contain any breaks during this interval, we use the

corresponding difference series from ti21 1 1 to ti11 to esti-
mate the magnitude using the changepoint model in step 3
that has the lowest BIC for this breakpoint. If a neighbor
contains breakpoints, but none are within “ADJ MINLEN”

(18/24/36/48) months before and after the target break, we
estimate an adjustment using the difference series from the
neighbor’s last break before the target and the first break
after. Otherwise, no adjustments are estimated. For each
breakpoint, looping over all neighbors results in its collec-
tion of estimated adjustments.

We then trim the collection of adjustment estimates in-
volving a record and its paired neighbors using a Tukey
method (Tukey 1977). The Tukey method is based upon
finding the median (Q2) and the first (Q1) and third quar-
tiles (Q3) within a collection and trimming estimates that
are smaller than Q1 2 k(Q2 2 Q1) or larger than Q3 1

k(Q3 2 Q2), where k 5 1.64, a value used by WMT12. If
more than “ADJ MINPAIR” (2/3/4/5) estimates remain,
another Tukey method is applied to these remaining esti-
mates. If Q1 2 k(Q2 2 Q1) and Q3 1 k(Q3 2 Q2) are of
the same sign, we use “ADJ EST” (median/mean/average
of the 25% and 75% quartiles) as the adjustment. Other-
wise, this breakpoint is discarded for now.

Step 5 is run twice to ensure that all breakpoints are ei-
ther discarded for now or that an estimated adjustment is
specified for each.

f. Adjust and iterate

Step 5 gives a list of estimated adjustments and a list of
breakpoints not yet adjusted (discarded for now in the last
step). Following PHA0, our revised PHA algorithms also
adjusts estimated breakpoints relative to values in the last
segment. After all adjustments estimated in step 5 are
made, the adjusted temperatures and the list of break-
points not yet adjusted are sent back to step 5, and step 5
is then rerun to check whether breakpoints in this remain-
ing list now become adjustable and estimate the magnitude
of required adjustments accordingly. In theory, this process
can iterate until no more adjustments can be made. In the
synthetic analyses, it usually takes two to three iterations to
reach that ending point. In the application to GHCNmV4
dataset, this process is iterated between steps 5 and 6 until
fewer than 100 breakpoints are adjusted in step 6. Six to
eight iterations are usually required before meeting this
criterion.

APPENDIX C

Multiparent Genetic Algorithm for Penalized Likelihood

The penalized likelihood method aims at finding the min-
imum penalized likelihood for a model:

DTt 5 DCt 1 DDt[1gt], (C1)

where DTt denotes interstation difference at time step t.
Terms DCt and DDt denote differences associated climatic
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variability and breakpoints, respectively. The term gt de-
notes an optional linear trend.

Assuming DCt follows an order-1 autoregressive process
(i.e., DCt 5 aDCt21 1 et), Eq. (C1) is prewhitened to be

Yt 5 DTt 2 aDTt21 5 DDt 2 aDDt21[1(a 1 t 2 at)g] 1 et,

(C2)

for a case without missing data, and

Yt 5
DTt 2 aktDTt2kt

Skt

5

DDt 2 aktDDt2kt
[1(akt kt 1 t 2 akt t)g] 1 ∑

kt

i51
ai21et2i11

Skt
,

(C3)

when missing data exist. In Eq. (C3), kt is the time differ-
ence between the current time step and the nearest previ-
ous one with data. Terms in brackets denote components
associated with fitting an optional linear trend.

Let the breakpoint component DD contain s segments
divided by s 2 1 breakpoints, such that our model contains
a total of 2s 1 1 parameters to be determined, comprising
s 2 1 timings of breakpoints, s 2 1 magnitudes of break-
points, the mean over the entire record, the autocorrelation
(a), and variance of climatic variability (et). When a trend
is also fit, the number of parameters increases by one.
The penalized loss function using Bayesian information
criteria is

L 5 n ln(2p) 1 ∑
n

t51
ln(et) 1 ∑

n

t51

S2kt (Yt 2 Ŷ t)2
et

1 (2s 1 1)ln(n),
(C4)

which is identical to Eq. (7) in the main text.
To conduct the optimization efficiently, we develop a multi-

parent genetic algorithm. This algorithm aims at finding the
timing of breakpoints and autocorrelation. Conditional on
breakpoint timing and autocorrelation, an ordinary least
squares approach is used to find the maximum likelihood
estimate of other parameters following Eq. (C3). Our ge-
netic algorithm develops upon methods proposed by Killick
et al. (2012, hereafter K12) and Li and Lund (2012, hereaf-
ter LL12) to allow for fast convergence for time series lon-
ger than 1000 time steps. Below we describe the algorithm
in four steps.

In step 1, a population is initialized. For each member
of the population, we initialize a Boolean vector h to rep-
resent the timing of breakpoints. This vector has the
length of nonmissing data points, and each element of h is
assigned probability P 5 0.01 of indicating a breakpoint at
the corresponding timing, i.e., ht 5 true. An initial guess
of autocorrelation is drawn from a uniform distribution
U(20.99, 0.99). Finally, we evaluate loss for individual ini-
tial members.

In step 2, descendants are generated. Similar to K12 and
LL12, the probability of choosing a member to be a parent
is inversely proportional to the rank of loss in an ascending
order. Unlike K12 or LL12 that find the parent using the
total loss for the entire time series, our multiparent ap-
proach breaks long series into 300 time step (25-yr) blocks
and finds the parents of each block independently according
to the local loss. Local loss is also calculated using Eq. (C4)
except n is the length of data within a block. It follows, for ex-
ample, that a 100-yr descendant series can have at most eight
different parents. Such a modification ensures that each descen-
dant has the tendency of inheriting the best fitted segments,
hence speeding up convergence.

In step 3, after all parents are determined, timing associ-
ated with breakpoints per segment are pooled together and
each breakpoint is assigned a probability of P 5 0.5 of be-
ing dropped. Conversely, each time step not indicating a
break is assigned a probability of 0.4% of becoming a
break, i.e., turning ht 5 false into ht 5 true. The 0.4%
probability corresponds to the occurrence of breakpoints
approximately every 20 years}the frequency in GHCN.
Breakpoints within four time steps are combined, and an
autocorrelation is estimated for each descendant using the
window method, as described in section 2a.

LL12 further perturbed the timing of retained breakpoints
by 0, 11, or 21, which is useful for fine tuning the optimal
timing. Similarly, we perturb the timing using a number drawn
from a normal distribution and rounded to the nearest inte-
ger. Inspired by simulated annealing (Bertsimas and Tsitsiklis
1993), we specify that the standard error of the normal distri-
bution decrease exponentially, s 5 3 exp(2Ng/20), where Ng

is the number of generations in the genetic algorithm. Com-
pared with LL12, our perturbation is larger at the beginning,
allowing for greater exploration of the parameter space and
generally, in our simulations, speeding up convergence. Simu-
lated annealing also guarantees that in later iterations the lo-
cation of identified breakpoints are only perturbed slightly for
purposes of fine tuning.

In step 4, the loss of each generated descendant is evalu-
ated. Unlike existing approaches, we also evaluate whether
removing all or each of the breaks whose magnitude is smaller
than half of the residual error further reduces global loss.
Whenever removing small breaks improves fitting, we up-
date the timings of breakpoints accordingly, thereby allow-
ing for efficient suppression of small breaks, which speeds
up convergence. Whereas dropping small breaks may re-
sult in the algorithm converging to a local minimum, small
breaks rarely improve the fit given the existence of a pen-
alty term.

The algorithm iterates between steps 2–4 until the best
member remains the same for 10 rounds. To further speed up
the convergence, we use an island approach similar to K12.
Our setup has three subpopulations that each has 150 mem-
bers. The generation of descendants is within subgroups and
after every five rounds, the best 20 members in subgroup j is
migrated to replace the worst 20 members in subgroup j 1 1
before generating descendants.
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