
The Annals of Applied Statistics
2021, Vol. 15, No. 1, 22–40
https://doi.org/10.1214/20-AOAS1367
© Institute of Mathematical Statistics, 2021

LATE 19TH CENTURY NAVIGATIONAL UNCERTAINTIES AND THEIR
INFLUENCE ON SEA SURFACE TEMPERATURE ESTIMATES

BY CHENGUANG DAI1,*, DUO CHAN2,‡, PETER HUYBERS2,§ AND NATESH PILLAI1,†

1Department of Statistics, Harvard University, *chenguangdai@g.harvard.edu; †pillai@fas.harvard.edu
2Department of Earth and Planetary Sciences, Harvard University, ‡duochan@g.harvard.edu; §phuybers@fas.harvard.edu

Accurate estimates of historical changes in sea surface temperatures
(SSTs) and their uncertainties are important for documenting and under-
standing historical changes in climate. A source of uncertainty that has not
previously been quantified in historical SST estimates stems from position
errors. A Bayesian inference framework is proposed for quantifying errors
in reported positions and their implications on SST estimates. The analysis
framework is applied to data from the International Comprehensive Ocean-
Atmosphere Data Set (ICOADS3.0) in 1885, a time when astronomical and
chronometer estimation of position was common but predated the use of radio
signals. Focus is upon a subset of 943 ship tracks from ICOADS3.0 that report
their position every two hours to a precision of 0.01◦ longitude and latitude.
These data are interpreted as positions determined by dead reckoning that are
periodically updated by celestial correction techniques. The posterior medi-
ans of uncertainties in celestial correction are 33.1 km (0.30◦ on the equator)
in longitude and 24.4 km (0.22◦) in latitude, respectively. Celestial naviga-
tion uncertainties being smaller in latitude than longitude is qualitatively con-
sistent with the relative difficulty of obtaining astronomical estimates. The
posterior medians for two-hourly dead reckoning uncertainties are 19.2% for
ship speed and 13.2◦ for ship heading, leading to random position uncertain-
ties with median 0.18◦ (20 km on the equator) in longitude and 0.15◦ (17 km)
in latitude. Reported ship tracks also contain systematic position uncertain-
ties relating to precursor dead-reckoning positions not being updated after
obtaining celestial position estimates, indicating that more accurate positions
can be provided for SST observations. Finally, we translate position errors
into SST uncertainties by sampling an ensemble of SSTs from the Multiscale
Ultrahigh Resolution Sea Surface Temperature (MURSST) data set. Evolv-
ing technology for determining ship position, heterogeneous reporting and
archiving of position information, and seasonal and spatial changes in nav-
igational uncertainty and SST gradients together imply that accounting for
positional error in SST estimates over the span of the instrumental record
will require substantial additional effort.

1. Introduction. Accurate estimates of past sea surface temperatures (SSTs) are impor-
tant for assessing historical climate states (Morice et al. (2012)), detecting and attributing
changes in climate (Chan and Wu (2015)), and computing climate sensitivity (Gregory et al.
(2002)). SST datasets are also used as boundary conditions to run general circulation models
(Folland (2005), Sobel (2007)), and are assimilated as part of generating atmospheric reanal-
ysis datasets (Dee et al. (2011)). SST datasets are, however, known to have substantial errors
(Kent et al. (2017)), especially prior to the systematic satellite, drifters and moored buoy
temperatures that became routinely available in the 1980s (Kennedy et al. (2011a)). For SST,
quantified errors include those associated with random errors of individual measurements
(Ingleby (2010), Kennedy et al. (2011a), Kent and Challenor (2006)), systematic errors as-
sociated with different measurement methods (Huang et al. (2017), Kennedy et al. (2011b)),
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offsets among different groups of observers (Chan et al. (2019)) as well as those associated
with individual ships (Kennedy et al. (2011a), Kennedy, Smith and Rayner (2012)). Another
important source of uncertainty involves mapping noisy and often sparse observations to infill
unobserved locations (Kennedy (1930)).

Despite quantification of many contributors to SST uncertainties, we are unaware of pre-
vious studies having quantitatively assessed navigational uncertainties associated with his-
torical ocean observations. That is, errors in position associated with incorrectly recording
or transcribing locations have been recognized (Woodruff et al. (1998)), as have errors in-
troduced by rounding of positions (Kent, Challenor and Taylor (1999)), but the magnitude
of navigational uncertainties prior to the widespread deployment of radio navigation in the
1930s (Fried (1977)) appears not to have been quantified. Prior to radio navigation, ship po-
sition in the open ocean was mainly estimated by dead reckoning and celestial techniques
(Bowditch (1906)). Dead reckoning involves updating ship position using estimates of head-
ing and distance. Celestial navigation involves estimating latitude from the zenith angle as-
sociated with various celestial bodies, including the sun, moon and stars. Longitude may be
inferred using a chronometer method whereby the difference between a local apparent time
and the time at some known longitude are determined from a clock carried onboard or some
other method, such as the phase of Jupiter’s moons. Dead reckoning can potentially intro-
duce both systematic and random uncertainties, whereas celestial correction is assumed free
of systematic uncertainties.

Position errors have implications on the accuracy of mapped SSTs. For example, if SST
measurements are binned into gridboxes, misspecification of the appropriate box will influ-
ence the mean and higher-order moments (Director and Bornn (2015)). Cervone and Pillai
(2015) have shown that incorporating position uncertainties when averaging land-station data
within gridboxes, which have typically been assumed to reside at the center of the gridbox,
is important for valid inference of land surface temperatures, and we expect that the addi-
tional uncertainties over the sea associated with ship positions are no less important. In the
following, we propose a Bayesian model to quantify position errors for various ship tracks
through estimating navigational uncertainties in dead reckoning and celestial correction. We
then translate position errors into SST uncertainties by sampling high-resolution SSTs using
posterior samples of ship positions.

2. Data description. The ship data used in this study are from the International Compre-
hensive Ocean-Atmosphere Data Set (ICOADS3.0) (Freeman et al. (2017)), which is the most
comprehensive available historical dataset of ship-based measurements from the eighteenth
century to the present. We use data from 1885 to demonstrate a Bayesian framework for esti-
mating position errors associated with historical ship tracks. Individual ship tracks are iden-
tified using ICOADS identification (ID) information, and tracks with missing or nonunique
IDs are excluded. Ship tracks traversing across open ocean are separated into shorter seg-
ments whenever they are close to islands. Only ship tracks that have their positions reported
at a resolution of every four hours or better and to a precision of better than one degree longi-
tude and latitude are retained. These high-resolution ship tracks are focussed on because it is
otherwise difficult to identify positions errors and to distinguish between contributions from
dead-reckoning and celestial navigation.

The highest resolution data comes from the U.S. Marine Meteorological Journals Collec-
tion, which was a program sponsored by the U.S. Navy’s Hydrographic Office, that enlisted
the help of commercial vessels in compiling meteorological data. Reports are primarily, albeit
not exclusively, from U.S. vessels and are provided every two hours at a resolution of 0.01◦
longitude and latitude. In total there are 1,341 of these two-hourly ship tracks. 943 of these
tracks, referred to as HQ2 tracks, are characterized by stable velocities that are episodically
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FIG. 1. Two types of ship tracks. The blue track is the high-quality two-hourly ship track No.30, and the yellow
track is the low-quality four-hourly ship track No.108. Jumps in position are seen in the two-hourly track, whereas
the four-hourly track appears overly smooth.

punctuated by jumps in position (see Figure 1 and Table 1). Jumps in otherwise smooth ship
tracks typically occur at midnight and are consistent with navigation using dead reckoning
that is updated by a celestial positioning technique (Bowditch (1906)). Ship tracks generally
follow well-established trade routes that tend to be meridional in the tropics and zonal in the
midlatitudes with the highest data density in the Atlantic, the Eastern Pacific and the Southern
Indian Ocean (see Figure 2).

The remaining 398 two-hourly tracks show static positions followed by jumps averaging
84.6 km in two hours which is unphysical for a ship under sail. We are unaware of meta-
data indicating how these positions were prescribed, and thus exclude these tracks from our
present analysis.

There also exists a separate collection of 576 ship tracks that report position every four
hours to a precision of 0.01◦ longitude and latitude. These four-hourly tracks, referred to as
LQ4 tracks, primarily track zonally between Europe and North America and meridionally
between Europe and South America. Unlike HQ2 tracks, LQ4 tracks appear overly smooth,
showing no discontinuities as would be expected from celestial navigational updates. We
assume that the position reports of these tracks have been manually interpolated, implying
that they contain less useful information for purposes of inferring navigational uncertainties.
Although LQ4 tracks are unreliable for inferring underlying navigational uncertainties, these
more smoothly-varying tracks are more generally representative of position data available
in ICOADS, and we develop a methodology for exploring their position uncertainties that
leverages results obtained from HQ2 tracks.

TABLE 1
Empirical speed and the jumping distance

Empirical speed (km/hr) Jumping distance (km)

Quantiles 25% 50% 75% 25% 50% 75%

HQ2 6.4 10.4 14.6 15.0 22.8 37.0
LQ4 15.8 18.3 19.6 – – –
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FIG. 2. Ship tracks used in this study. (a) Tracks are divided into high-quality, two-hourly ship tracks (HQ2)
and low-quality, four-hourly ship tracks (LQ4). (b) Density of ship position reports at 2◦ resolution.

It is necessary to define when celestial updates occur for HQ2 tracks. Celestial navigational
updates are presumed to occur when the ship track jumps. Using the speed and heading from
neighboring ship positions, we predict the next position, and a jump is identified when the
predicted and reported positions differ by at least 7 km in either longitude or latitude. 7 km
is chosen on account of its being the 80th percentile of latitudinal differences between pre-
dicted and reported ship positions. Note that longitude and latitude are treated independently
because their respective methods of celestial positioning are distinct. When several jumps are
identified in a single day, only the largest jump is selected.

3. Bayesian model. The proposed Bayesian model for estimating position errors con-
tains three stages. First, position errors, uncertainties in ship speed and heading are inferred
for each HQ2 track using a state-space time series model. Second, navigational uncertainties
are synthesized across different HQ2 tracks using a Bayesian hierarchical model. Finally, un-
certainties are modeled for LQ4 data using a forward navigation model based upon results
obtained from HQ2 data. Stages two and three utilize the posterior samples obtained from
prior stages. All the models described below are fitted using RStan (Stan Development Team
(2019)).

We note that ideally, these stages would be integrated into a single, inclusive, hierarchical
Bayesian model. However, as we will see, for each ship track the number of parameters in
the model is approximately two times the length of the track. Based on our experiences, it
can take up to six hours using RStan to fit a single ship track with approximate 400 reported
positions. Therefore, given the amount of data as well as the model complexity, we proceed
with the multistage approach mentioned above to bypass the computational difficulty of im-
plementing a full Bayesian procedure.

3.1. State-space model for HQ2 tracks. The proposed model utilizes the reported HQ2
ship positions to empirically calculate ship speed and heading at two-hourly time steps. Ship
position and heading are in radians and speed is in km/hr. Let (qx

t , q
y
t ) be the displacements

(km) that the ship travels from the starting position to the reported position at time step
t . Correspondingly, let (px

t ,p
y
t ) be the displacements from the starting position to the true

position. qx
t , px

t (qy
t , p

y
t ) are positive if the current ship position is to the east (north) of the
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TABLE 2
Definition of parameters

Parameter Definition

(φt ,ψt ) Reported ship position in longitude and latitude.
(qx

t , q
y
t ) Displacement from the starting position to the reported position.

(px
t ,p

y
t ) Displacement from the starting position to the true position.

st , ŝt , μs True ship speed, empirical ship speed, mean of ship speed.
θt , θ̂t , β True ship heading, empirical ship heading and its systematic bias.
σs , σθ Evolutionary uncertainties in ship speed and heading.
τx , τy Track-based uncertainties in celestial correction.
τs , τθ Track-based uncertainties in dead reckoning.
μτx , μτy Population median of uncertainties in celestial correction.
μτs , μτθ Population median of uncertainties in dead reckoning.

The subscripts or superscripts x, y, s, θ refer to the longitudinal direction, the latitudinal direction, ship speed and
ship heading, respectively.

starting point. qx
t , q

y
t are calculated as accumulated sums following equation (3.1), where φ

denotes the reported longitude, ψ denotes the reported latitude, ra denotes the radius of earth,
and the subscripts denote the time step. The cosine term accounts for changes in distance-
longitude scaling with latitude. Definitions of parameters used in the model are listed in
Table 2:

(3.1) qx
t =

t∑
i=1

ra(φi − φi−1) cos
(

ψi + ψi−1

2

)
, q

y
t =

t∑
i=1

ra(ψi − ψi−1).

3.1.1. Transition model. For ship speed st , we assume a customary centered AR model
described as below:

(3.2) st = μs + αs(st−1 − μs) + εs
t .

αs ∈ (0,1) denotes the drift parameter, and μs denotes the unknown track-based population
mean of st . Conditioning on αs , μs and st−1, we assume that εs

t follows a truncated normal
distribution with mean 0, variance σ 2

s and lower truncation at −μs − αs(st−1 − μs), so as to
guarantee that st is nonnegative.

For ship heading θt , we assume a simple random walk model. That is,

(3.3) θt = θt−1 + εθ
t , εθ

t ∼ N
(
0, σ 2

θ

)
.

Both εs
t and εθ

t are assumed to be independent across time. The transition model is essen-
tially parametrized in terms of st and θt , while the aggregated displacements px

t and p
y
t are

deterministic functions of st and θt . That is,

(3.4) px
t = px

t−1 + 2st cos θt , p
y
t = p

y
t−1 + 2st sin θt ,

which captures the physical navigation process by using ship speed and ship heading to
project its next position (the same as dead reckoning navigation). We multiply st by 2 in
the model because we are modeling two-hourly ship tracks, whereas st is in unit of km/hr.

3.1.2. Observation model. Suppose there are in total m celestial updates along the ship
track. Let C = {t1, . . . , tm} be the set of the corresponding time steps.

For t /∈ C (e.g., position B in Figure 3), we note that the reported ship trajectory is sys-
tematically biased, thus the ship position contains accumulated position errors. Therefore,
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FIG. 3. A cartoon illustration of a celestial update along HQ2 tracks. Reported ship positions are represented
by circles, and the dashed circle denotes a celestial correction. The reported ship trajectory is indicated by the
solid arrow, but it is systematically biased relative to the true ship trajectory indicated by the dashed arrow.

rather than basing the model on position information, we use the empirical ship speed ŝt and
ship heading θ̂t , which are not expected to have persistence insomuch as dead-reckoning is
utilized for navigation. Mathematically, for t ∈ (tk, tk+1), we assume

(3.5) ŝt ∼ N
(
st , (τsst )

2)
, θ̂t ∼ N

(
θt + βk, τ

2
θ

)
,

in which τs and τθ denote the track-based uncertainties in dead reckoning. It is worthwhile to
note that in early navigations, ship speed was usually measured by a chip log that measures
the length of a rope released as a ship travels, or by a patent log that counts the numbers of
turns a turbine rotates when water passes though (Bowditch (1906)). Since both methods tend
to have larger measurement errors at higher ship speed, we model the uncertainty in terms of
the relative ship speed instead of the absolute ship speed. Besides, we introduce βk to model
the systematic bias in ship heading between two celestial updates at time step tk and tk+1.
The prior on βk is Unif(−π,π ].

For t ∈ C (e.g., position A in Figure 3), empirical ship speed and heading are ignored,
as they are very inaccurate because of the large jumps (see Table 1), whereas the reported
ship positions are assumed to contain only celestial observational errors. Thus, for t ∈ C, we
assume

(3.6) qx
t ∼ N

(
px

t , (τx cosψt)
2)

, q
y
t ∼ N

(
p

y
t , τy

2)
.

qx
t and q

y
t denote the observed aggregated displacements. ψt denotes the reported latitude.

τx and τy denote the track-based uncertainties in celestial correction in the longitudinal and
latitudinal direction, respectively.

3.2. Synthesizing information across different HQ2 tracks. The state-space model dis-
cussed in Section 3.1 describes a single HQ2 track. We assume consistent levels of accuracy
in celestial correction and dead reckoning over HQ2 tracks, permitting for borrowing infor-
mation on the uncertainty parameters across different tracks. Let {τ (j)

x , τ
(j)
y , τ

(j)
s , τ

(j)
θ } be the

uncertainty parameters associated with HQ2 track j . We assume a hierarchical structure on
the uncertainty parameters,

(3.7) log τ (j)
x ∼ N

(
logμτx , γ

2
τx

)
, log τ (j)

y ∼ N
(
logμτy , γ

2
τy

)
.

logμτx and logμτy denote the respective population medians of log τ
(j)
x and log τ

(j)
y . Since

the log transformation is monotone, μτx and μτy are the respective population medians of

τ
(j)
x and τ

(j)
y . τ

(j)
s , τ

(j)
θ are modeled in the same fashion. Conditioning on the population-

level parameters, track-based navigational parameters are assumed to be independent.
To remedy the computational challenge, we consider a second-stage model, where we

synthesize the uncertainty information across tracks based on the posterior samples obtained
by fitting each HQ2 track. The variability of the navigational parameters across different
tracks are summarized in Figure 12 in the Appendix.
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Given n posterior samples {τ (j,i)
x , τ

(j,i)
y }i∈{1,··· ,n} of HQ2 track j , we assume a hierarchical

model,

(3.8)
log τ (j,i)

x ∼ N
(
logμ(j)

τx
, η(j)

τx

2)
, logμ(j)

τx
∼ N

(
logμτx , γ

2
τx

)
,

log τ (j,i)
y ∼ N

(
logμ(j)

τy
, η(j)

τy

2)
, logμ(j)

τy
∼ N

(
logμτy , γ

2
τy

)
,

in which μ
(j)
τx , μ

(j)
τy and η

(j)
τx , η

(j)
τy denote the track-level medians and standard deviations for

HQ2 track j . Conditioning on the track-level parameters μ
(j)
τx , η

(j)
τx and μ

(j)
τy , η

(j)
τy , we assume

τ
(j,i)
x and τ

(j,i)
y are independent across the sample index i. Conditioning on the population-

level parameters μτx , γτx and μτy , γτy , we assume μ
(j)
τx , η

(j)
τx and μ

(j)
τy , η

(j)
τy are independent

across the track index j . {τ (j,i)
s , τ

(j,i)
θ } are modeled in the same fashion.

3.3. Forward navigation model for LQ4 tracks. The forward navigation model aims at
representing dead reckoning and celestial correction contributions to position errors for LQ4
tracks. We assume that the population-level uncertainties in ship speed and heading for LQ4
tracks are consistent with those for HQ2 tracks. Speed and heading can then be represented
as

(3.9) ŝt = st
(
1 + es

t

)
, θ̂t = θt + eθ

t ,

where es
t , eθ

t are assumed to be i.i.d. over time. We impose the following hierarchical priors
on es

t , eθ
t :

(3.10)
es
t ∼ N

(
0, τ 2

s

)
, log τs ∼ N

(
log μ̂τs , γ̂

2
τs

)
,

eθ
t ∼ N

(
0, τ 2

θ

)
, log τθ ∼ N

(
log μ̂τθ , γ̂

2
τθ

)
,

in which μ̂τs , μ̂τθ , γ̂τs and γ̂τθ are the empirical posterior means of μτs , μτθ , γτs and γτθ ,
respectively, obtained by fitting the hierarchical model discussed in Section 3.2. τx and τy ,
which calibrate the uncertainties in celestial correction, are incorporated into the data likeli-
hood as in equation (3.6), and their priors are specified similarly as in equation (3.10).

For celestial navigation, we denote p as the probability that a celestial observation is em-
ployed. In order to illustrate the sensitivity of our results to whether celestial observations
are taken—and because we have no direct evidence of whether celestial observations are em-
ployed on any given day—we provide results assuming observations are taken every night
(p = 1), half of the time (p = 0.5) and never (p = 0).

4. Results.

4.1. High-quality two-hourly ship tracks. A single track, HQ2 track No.30, is described
for purposes of illustrating the results. HQ2 track No.30 moved from west to east, where
blue dots in Figure 4 represent the reported ship positions, black dots represent the poste-
rior mean positions and ellipses indicate posterior one-standard deviation uncertainties. The
trajectory of the posterior mean tends to diverge from the reported ship positions when celes-
tial navigation updates are large because, unlike reported positions, posterior means take into
account not only information from preceding celestial updates but also later ones. Figure 5
demonstrates the global pattern of random position uncertainties for HQ2 tracks.

For celestial correction, the population median of the uncertainty in the longitudinal direc-
tion is approximately 33.1 km or 0.30◦ on the equator, while the population median of the
uncertainty in the latitudinal direction is smaller, approximately 24.4 km or 0.22◦ (see Ta-
ble 3). A smaller uncertainty estimate in latitude accords with expectation because celestial
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FIG. 4. The posterior distributions of ship positions. For HQ2 track No.30, blue dots are reported ship positions,
black dots represent the posterior means and circles show posterior uncertainties (one standard deviation). For
LQ4 track No.108, yellow dots are reported ship positions, red dots and circles are the posterior means and
uncertainties assuming a celestial correction happens every midnight (p = 1), and black dots and gray circles are
the posterior means and uncertainties assuming there are no celestial corrections (p = 0).

correction in the longitudinal direction is subject to errors in both celestial observations and
chronometers, whereas celestial correction in the latitudinal direction is free of chronometer
errors (Bowditch (1906)). The population median of the uncertainty in the relative ship speed
ŝt /st is approximately 19.2%, which is possibly attributed to the less reliable instruments, for
example, chip logs and patent logs, used in early navigations. The population median of the
uncertainty in ship heading is approximately 0.23 radian or 13.2◦. Among all HQ2 tracks, the

FIG. 5. Global pattern of random position uncertainties for HQ2 tracks. Individual panels are: (a) longitude and
(b) latitude. Track-based estimates of random position uncertainties are gridded to 2◦ resolution for visualization.
Binning is accomplished by averaging random position uncertainties within a gridbox in quadrature.
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TABLE 3
The population median of navigational parameters

Quantiles 5% 25% 50% 75% 95% std

μτx (km) 31.6 32.4 33.1 33.7 34.6 0.92
μτy (km) 23.2 23.9 24.4 24.9 25.6 0.74
μτs (%) 18.3 18.8 19.2 19.6 20.1 0.5
μτθ (rad) 0.21 0.22 0.23 0.24 0.25 0.01

μτx and μτy denote the population median of the uncertainty in celestial correction along the longitudinal and the
latitudinal directions, respectively. μτs and μτθ denote the population median of the uncertainty in the relative
ship speed ŝt /st and ship heading, respectively.

25%, 50% and 75% quantiles of the absolute difference between the reported ship heading
and the posterior mean heading are 2.9◦, 7.9◦ and 20.4◦, respectively.

4.2. Low-quality four-hourly ship tracks. As noted, we are unable to infer when LQ4
tracks have their positions updated by celestial observations and, therefore, explore three
scenarios wherein celestial positions are made every midnight, with 0.5 probability, or never.
Figure 4 shows the posterior distributions of LQ4 track No.108 under the best-case and worst-
case scenarios. Under the best-case scenario, all the midnight positions along the track are
considered being celestially corrected, and LQ4 track exhibits small Brownian-bridge un-
certainty structures between consecutive midnight positions. Under the worst-case scenario,
we assume no celestial corrections, and LQ4 track exhibits a Brownian-bridge uncertainty
structure that spans the departure and arrival points.

Table 4 summarizes position errors of all LQ4 tracks under the three scenarios. The over-
all position uncertainty (MSE) combines the random position uncertainty (standard devia-
tion) and the systematic position uncertainty (bias) using the bias-variance decomposition.
On average, random position uncertainties of LQ4 tracks are 0.50◦ (56 km on the equator)
in longitude and 0.44◦ (49 km) in latitude under the worst-case scenario, and 0.16◦ (18 km)
in longitude and 0.13◦ (14 km) in latitude under the best-case scenario. The half-probability
scenario is similar to, albeit of course slightly more uncertain than, the best-case scenario.
The random position uncertainty of LQ4 tracks under the best-case scenario appears to be
smaller than that of HQ2 tracks, where the latter have only 87% of nights associated with
a celestial correction. Because there are no apparent jumps, LQ4 tracks are inferred to have
smaller systematic uncertainty than estimated for HQ2 tracks.

The Brownian-bridge uncertainty structure implies larger errors associated with longer
journeys, and being further away from departure and arrival points such that positions in the
interior of oceans are generally more uncertain (see Figure 6). Note that position uncertain-
ties depend not only on the distance from coasts or islands but also on directions that ships
are heading, which determines the relative magnitude of the uncertainties in longitude and
latitude.

4.3. SST uncertainties. To quantify uncertainties in SSTs associated with errors in posi-
tion, we sample a high-resolution SST dataset with position errors that mimic those expected
from our analysis of HQ2 tracks. We use the Multiscale Ultrahigh Resolution Sea Surface
Temperature dataset (MURSST) (Chin, Vazquez-Cuervo and Armstrong (2017)) that incor-
porates infrared and microwave satellite retrievals and observations from ships and buoys.
Although the data is obviously more recent than the 1885 ship tracks that we analyze,
MURSST has the advantage of having a 0.01◦ spatial resolution that is comparable to the
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TABLE 4
Random and systematic position uncertainties

Random position uncertainty

Quantiles 25% 50% 75% mean

HQ2 longitude 0.11◦ (12 km) 0.18◦ (20 km) 0.23◦ (26 km) 0.18◦ (20 km)
HQ2 latitude 0.10◦ (11 km) 0.15◦ (17 km) 0.20◦ (22 km) 0.16◦ (18 km)
LQ4 longitude (1.0) 0.11◦ (12 km) 0.16◦ (18 km) 0.20◦ (22 km) 0.16◦ (18 km)
LQ4 longitude (0.5) 0.16◦ (18 km) 0.22◦ (24 km) 0.28◦ (31 km) 0.23◦ (26 km)
LQ4 longitude (0.0) 0.35◦ (39 km) 0.50◦ (56 km) 0.66◦ (73 km) 0.50◦ (56 km)
LQ4 latitude (1.0) 0.09◦ (10 km) 0.13◦ (14 km) 0.17◦ (19 km) 0.13◦ (14 km)
LQ4 latitude (0.5) 0.13◦ (14 km) 0.18◦ (20 km) 0.24◦ (27 km) 0.19◦ (21 km)
LQ4 latitude (0.0) 0.29◦ (32 km) 0.44◦ (49 km) 0.60◦ (67 km) 0.44◦ (49 km)

Systematic position uncertainty

Quantiles 25% 50% 75% mean

HQ2 longitude 0.06◦ (6.7 km) 0.16◦ (18 km) 0.34◦ (38 km) 0.24◦ (27 km)
HQ2 latitude 0.05◦ (5.6 km) 0.14◦ (16 km) 0.30◦ (33 km) 0.21◦ (23 km)
LQ4 longitude (1.0) 0.00◦ (0.0 km) 0.00◦ (0.0 km) 0.01◦ (1.1 km) 0.00◦ (0.0 km)
LQ4 longitude (0.5) 0.00◦ (0.0 km) 0.01◦ (1.1 km) 0.01◦ (1.1 km) 0.01◦ (1.1 km)
LQ4 longitude (0.0) 0.01◦ (1.1 km) 0.03◦ (3.3 km) 0.06◦ (6.7 km) 0.05◦ (5.6 km)
LQ4 latitude (1.0) 0.00◦ (0.0 km) 0.00◦ (0.0 km) 0.01◦ (1.1 km) 0.00◦ (0.0 km)
LQ4 latitude (0.5) 0.00◦ (0.0 km) 0.01◦ (1.1 km) 0.01◦ (1.1 km) 0.01◦ (1.1 km)
LQ4 latitude (0.0) 0.01◦ (1.1 km) 0.03◦ (3.3 km) 0.06◦ (6.7 km) 0.05◦ (5.6 km)

Overall position uncertainty

Quantiles 25% 50% 75% mean

HQ2 longitude 0.16◦ (18 km) 0.26◦ (29 km) 0.42◦ (47 km) 0.32◦ (36 km)
HQ2 latitude 0.14◦ (16 km) 0.23◦ (26 km) 0.37◦ (41 km) 0.28◦ (31 km)
LQ4 longitude (1.0) 0.12◦ (13 km) 0.16◦ (18 km) 0.20◦ (22 km) 0.16◦ (18 km)
LQ4 longitude (0.5) 0.16◦ (18 km) 0.22◦ (24 km) 0.28◦ (31 km) 0.22◦ (24 km)
LQ4 longitude (0.0) 0.36◦ (40 km) 0.51◦ (57 km) 0.68◦ (75 km) 0.51◦ (57 km)
LQ4 latitude (1.0) 0.10◦ (11 km) 0.14◦ (16 km) 0.17◦ (19 km) 0.14◦ (16 km)
LQ4 latitude (0.5) 0.13◦ (14 km) 0.18◦ (20 km) 0.24◦ (27 km) 0.19◦ (21 km)
LQ4 latitude (0.0) 0.30◦ (33 km) 0.46◦ (51 km) 0.62◦ (69 km) 0.46◦ (51 km)

1.0, 0.5 and 0.0 correspond to the the best-case scenario, the random-guess scenario and the worst-case scenario
for LQ4 tracks, respectively.

HQ2 ship-track precision. Estimated SST uncertainties are still meaningful because the ba-
sic SST patterns—including those related to equator-to-pole temperature gradients, boundary
currents, gyres, and upwelling regions—are stable features of the ocean circulation (Wunsch
(2004)).

SSTs in MURSST are repeatedly sampled in order to estimate uncertainties. For each
posterior ship trajectory, we sample SSTs at the realized positions in MURSST on the cor-
responding high-resolution monthly climatology over 2003–2018. In total we obtain 1,000
posterior ship trajectories, and their corresponding SSTs are sampled. The uncertainties in
SSTs are estimated by taking the standard deviation across these 1,000 samples. For pur-
poses of visual display, the uncertainties are regridded at 2◦ resolution.

Position errors induce uncertainties in SST in regions where position errors are large and
SST gradients are strong. On average, position errors in HQ2 tracks translate into 0.11◦C SST
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FIG. 6. Global pattern of random position uncertainties for LQ4 tracks. Left panels show longitude uncertain-
ties for: (a) best-case, (b) random-guess and (c) worst-case scenarios. Right panels are as the left but for latitude
uncertainties. In the best-case scenario, the celestial correction happens at each midnight. In the random-guess
scenario, midnight positions have a probability of 0.5 to be corrected, whereas, in the worst-case scenario, ce-
lestial corrections never happen. Maps are shifted to center on the Atlantic for the purpose of visualization.
Procedures of generating maps from individual measurements are as per Figure 5.

uncertainties (see Table 5), but can be as large as 0.33◦C in the Northwest Atlantic where the
western boundary current detaches from the East Coast of the U.S. (see Figure 7). Larger
SST uncertainties are also found in regions where other boundaries currents detach in the
Northwest Pacific and Southwest Atlantic as well as in the vicinity of the Aghulas Current
south of South Africa. For LQ4 tracks, SST uncertainties average 0.22◦C and reach 0.94◦C
in the midlatitude Northwest Atlantic under the zero-celestial observation scenario, and are
similar to HQ2 tracks in the other scenarios (see Table 5 and Figure 8).

5. Concluding remarks. We are unaware of previous efforts to quantify the position
uncertainty of historical observations from ships. The magnitude of uncertainties of a given



BAYESIAN QUANTIFICATION OF SEA SURFACE TEMPERATURE UNCERTAINTY 33

TABLE 5
A comparison of SST uncertainty and SST offset

Globala SST uncertainty (◦C) SST offset (◦C)

Quantiles 25% 50% 75% mean 25% 50% 75% mean

HQ2 0.03 0.06 0.12 0.11 −0.05 0.01 0.07 0.02
LQ4 (1.0) 0.02 0.05 0.09 0.08 −0.01 0.00 0.01 0.00
LQ4 (0.5) 0.03 0.07 0.12 0.10 −0.01 0.00 0.01 0.00
LQ4 (0.0) 0.08 0.16 0.27 0.22 −0.03 0.00 0.03 0.01

Regionalb SST uncertainty (◦C) SST offset (◦C)

Quantiles 25% 50% 75% mean 25% 50% 75% mean

HQ2 0.08 0.23 0.46 0.33 −0.22 −0.00 0.24 0.03
LQ4 (1.0) 0.11 0.26 0.47 0.32 −0.05 0.00 0.04 −0.01
LQ4 (0.5) 0.17 0.37 0.62 0.43 −0.07 −0.01 0.04 −0.01
LQ4 (0.0) 0.42 0.83 1.29 0.94 −0.30 −0.03 0.25 −0.02

aThe summary statistics are calculated using SSTs at all positions along ship tracks.
bThe summary statistics are calculated using SSTs restricted in the regions over the Gulf Stream (280–320◦E,
40–50◦N and 280–300◦E, 35–40◦N).

quantity associated with position uncertainties will depend on the local gradient of that quan-
tity, which we estimated for SSTs is on the order of 0.1◦C over the globe but can be up to
0.3◦C regionally (Figures 7, 8 and Table 5). Expected SST errors from position uncertain-
ties are small, as compared with other error sources. For example, individual SST measure-
ments have random measurement errors of approximately 1.0◦C (Kent and Challenor (2006))
and are subject to biases that average approximately 0.4◦C cool when measured using can-

FIG. 7. SST uncertainties associated with position errors for HQ2 tracks. Individual panels are: (a) random SST
uncertainties and (b) systematic SST offsets. Results are binned to 2◦ grids for visualization.
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FIG. 8. SST uncertainties associated with position errors for LQ4 tracks. Panels (a), (b) and (c) demonstrate
random SST uncertainties under the best-case scenario, the random-guess scenario and the worst-case scenario,
respectively. Panel (d) shows SST offsets under the best-case scenario. Results are binned to 2◦ grids for visual-
ization.

vas buckets and, approximately, 0.2◦C warm when collected using the engine-room-intake
method (Kennedy et al. (2011b)). Recent studies also identified significant offsets up to 0.5◦C
associated with national groups by comparing collocated measurements (Chan and Huybers
(2019)).

We note, however, that position uncertainties are distinct from other errors in that they will
influence all observations made from the same journey, leading to correlated errors along
ship tracks. Moreover, position uncertainties will affect the estimation of biases and random
SST errors since many existing approaches require pairing collocated measurements (Kent
and Challenor (2006), Chan and Huybers (2019)). As noted, position errors can also lead to
changes in tail behavior and high-order moments in grid-box averaged SSTs (Director and
Bornn (2015)). We suspect that similar concerns arise with respect to other mapping pro-
cedures that interpolate using weighted averages of observations, depending upon uncertain
positions.

The HQ2 data provides sufficiently frequent and precise observations to characterize un-
certainties but may not be indicative of the overall accuracy of SST positions in 1885. We
speculate the vessels enrolled in the U.S. meteorological program represent a subset of ships
wherein a higher priority was placed upon navigation. Data that is reported with lower res-
olution and without distinct indications of celestial navigational updates may reflect cruises
wherein navigation was a lower priority, or less feasible, given limitations with regard to
expertise, equipment or labor. Thus, estimated position errors may not reflect the overall un-
certainty of position data in 1885. There will also be heterogeneity in reports among ships
for which we have not fully accounted. Some cruises, presumably, had lower need of precise
navigation; for example, a zonal cross-Atlantic cruise would have less need of determining
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longitude for purposes of ensuring landfall than a cruise with a meridional heading whose
intended port was an island. In addition, there are also possibilities that longitude and lati-
tude are not celestially corrected simultaneously for earlier navigators because of less widely
deployed ship-board chronometers (Bowditch (1906)).

We focus on a single year in developing and testing our procedure, but it would be useful
to extend the analysis over a longer time horizon and to a greater fraction of the data. In 1885,
around 85% of observations are associated with ship tracks. Furthermore, Carella, Kent and
Berry (2017) have provided estimates of additional data belonging to individual ship tracks,
bringing the percentage of observations associated with ship tracks in 1885 to 90%. In more
data-rich intervals, however, distinguishing individual ship track becomes more difficult such
that between 1900–1940 only 60% of observations, on average, are associated with tracks.

There is presumably a trend toward increasing accuracy of position with time, given tech-
nological improvements in marine navigation. This implies that errors and modification of
SST distributions introduced through positional error will decrease through time, possibly
having consequence for trend estimates, especially those in the vicinity of sharp SST gradi-
ents. Position error may limit the spatial resolution over which trends can accurately be de-
termined. It would be useful to estimate uncertainties for a gridded SST product with global
coverage that, in addition to accounting for observational SST errors (Kennedy et al. (2011b))
and correcting for biases (Kent et al. (2017), Chan et al. (2019)), also accounts for position
errors.

APPENDIX

To evaluate the fitness of the proposed models, we check the following aspects, includ-
ing the posterior predictive distributions of HQ2 tracks and the posterior distributions of the
navigational parameters.

A.1. Posterior predictive check of HQ2 tracks. The posterior predictive check is a
self-consistency check in the sense that any replicated data simulated from the posterior pre-
dictive distribution should look similar to the observed data.

To generate posterior predictive samples of each HQ2 track, we first sample a set of nav-
igational parameters τx , τy , τs , τθ from their posterior samples. Recall that C = {t1, . . . , tm}
is the set of time steps when celestial updates happen. For t ∈ C, that is, the reported ship
position contains only celestial observational errors, we sample px

t , p
y
t from their posterior

samples and sample qx
t , q

y
t from

(A.1) qx
t ∼ N

(
px

t , (τx cosψt)
2)

, q
y
t ∼ N

(
p

y
t , τy

2)
.

Otherwise, if t ∈ (tk, tk+1), we follow the dead reckoning navigation, and sample st , θt , βk

from their posterior samples and sample ŝt , θ̂t from

(A.2) ŝt ∼ N
(
st , (τsst )

2)
, θ̂t ∼ N

(
θt + βk, τ

2
θ

)
.

Then we generate qx
t , q

y
t as follows:

(A.3) qx
t = qx

t−1 + 2ŝt cos(θ̂t ), q
y
t = q

y
t−1 + 2ŝt sin(θ̂t ).

Figure 9 shows the posterior predictive distributions of HQ2 track No.30, generated based
on 1,000 posterior predictive samples. We see that the empirical means of the posterior pre-
dictive samples imitate the observed data. As expected, the position uncertainty follows a
quasi-daily pattern.
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FIG. 9. Posterior predictive distributions of HQ2 track No.30. The blue dots represent the reported ship posi-
tions, the black dots represent the posterior predictive means and the circles calibrate the posterior predictive
uncertainties (one standard deviation).

A.2. Check of navigational uncertainties via a linearized model. The estimates of
the navigational parameters play a crucial role in the downstream analysis. We propose an
independent linearized model to directly estimate these navigational parameters using HQ2
tracks, and compare the obtained estimates to the results in Table 3.

We first linearize the dead reckoning process by Taylor expansion and omit the second
order terms. For t /∈ C, we have

(A.4)

λ̂x
t = λ̂x

t−1 + 2st
(
1 + es

t

)
cos

(
θt + eθ

t

)
≈ λ̂x

t−1 + 2st cos θt + 2st cos θte
s
t − 2st sin θte

θ
t ,

λ̂
y
t = λ̂

y
t−1 + 2st

(
1 + es

t

)
sin

(
θt + eθ

t

)
≈ λ̂

y
t−1 + 2st sin θt + 2st sin θte

s
t + 2st cos θte

θ
t ,

where λ̂x
t and λ̂

y
t , in units of km, are the reported zonal and meridional displacements of a ship

to its position since the last celestial correction. es
t and eθ

t denote the errors in the relative ship
speed and ship heading. We assume that es

t , eθ
t follow N(0, τ 2

s ) and N(0, τ 2
θ ), respectively,

where τs , τθ calibrate the uncertainties in the relative ship speed and ship heading. es
t , eθ

t are
assumed to be independent across time. For t ∈ C, we have

(A.5) λ̂x
t ∼ N

(
0, (τx cosψt)

2)
, λ̂

y
t ∼ N

(
0, τ 2

y

)
,

where τx and τy calibrate the uncertainties in celestial correction. Combining linearized dead
reckoning and celestial correction, we can approximate the variances of jumps in the longi-
tudinal and latitudinal direction by

(A.6)
Var

(
J x) = τ 2

s �x2 + τ 2
θ �y2 + 2(τx cosψ)2,

Var
(
J y) = τ 2

s �y2 + τ 2
θ �x2 + 2τ 2

y .

J x , J y denote the jumping distances in the longitudinal and latitudinal direction, and �x2,
�y2 denote the sum of squared distances between consecutive reports from the last celestial
update to the position right before the next celestial update. We drop the dependence on t for
notational convenience.

We use 20,694 midnight jumps identified from 943 HQ2 tracks to estimate the navigational
parameters τx , τy , τs , τθ . All the jumps are binned by 20 km × 20 km grids. Within each bin,
we obtain the sample variances, V̂x and V̂y , of the jumping distances in the longitudinal and
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TABLE 6
Posterior distributions of the navigational parameters based on the linearized model

Quantiles 5% 25% 50% 75% 95% std

τx (km) 30.91 31.12 31.27 31.44 31.67 0.23
τy (km) 24.17 24.37 24.50 24.64 24.85 0.21
τs (%) 15.07 15.25 15.38 15.49 15.65 0.17
τθ (rad) 0.058 0.061 0.063 0.064 0.067 0.003

τx and τy denote the uncertainty in celestial correction along the longitudinal and the latitudinal direction, respec-
tively. τs and τθ denote the uncertainty in the relative ship speed and ship heading.

latitudinal direction. Approximately, the sample variances in each bin follow

(A.7) (n − 1)
V̂x

Var(J x)
∼ χ2

n−1, (n − 1)
V̂y

Var(J y)
∼ χ2

n−1,

where n is the sample size in that bin. We set up standard noninformative priors on all the
navigational parameters and combine the likelihood specified in equation (A.7) to obtain the
posterior distributions.

The results are summarized in Table 6. For dead reckoning, due to the linearization, we
obtain smaller estimates of the uncertainties in the relative ship speed and ship heading,
compared to the results in Table 3. For celestial correction, we see that the two methods
produce consistent estimates of the uncertainties.

A.3. Additional checks. Figure 10 shows the posterior distribution of ship speed st for
HQ2 track No.30. The blue line represents the empirical ship speed, the black line repre-
sents the posterior median and the gray shadow calibrates the first and the third quantiles
of the posterior distribution. We note that the unphysical blue peaks correspond to the large
celestial updates along the ship trajectory, and the proposed state-space time series model in
Section 3.1 helps reasonably smooth out st .

Figure 11 demonstrates the distributions of the navigational parameters σs and σθ
1 across

HQ2 tracks, which calibrate the evolutionary uncertainties in ship speed and heading, respec-

FIG. 10. The posterior distribution of ship speed st for HQ2 track No.30. The blue line represents the empirical
ship speed, the black line represents the posterior median, and the gray shadow calibrates the first and the third
quantiles of the posterior distribution. The blue peaks correspond to the celestial corrections along the ship
trajectory.

1See the definitions of σs and σθ in equations (3.2), (3.3) and the discussion therein.
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FIG. 11. The histograms of the posterior means of the navigational parameters σs and σθ across HQ2 tracks,
which calibrate the evolutionary uncertainties in ship speed and heading, respectively.

tively. We see that σs is small enough so that the lower truncation on εs
t has little effect. In

addition, although θt is a bounded quantity, σθ is also sufficiently small so that there are no
unexpected consequences to assume a normal distribution for εθ

t .
We also summarize the variability of the navigational parameters across HQ2 tracks in

Figure 12. In particular, we show the histograms of the posterior means of the navigational
parameters τx , τy , τs and τθ for HQ2 tracks.
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FIG. 12. The histograms of the posterior means of the navigational parameters across HQ2 tracks. τx and τy
calibrate the uncertainties in celestial correction along the longitudinal and the latitudinal direction, respectively.
τs and τθ calibrate the uncertainties in the relative ship speed ŝt /st and ship heading, respectively.
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