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Early-twentieth-century cold bias in ocean 
surface temperature observations

Sebastian Sippel1,2 ✉, Elizabeth C. Kent3, Nicolai Meinshausen4, Duo Chan5, 
Christopher Kadow6, Raphael Neukom7,8, Erich M. Fischer2, Vincent Humphrey9, 
Robert Rohde10, Iris de Vries2 & Reto Knutti2

The observed temperature record, which combines sea surface temperatures  
with near-surface air temperatures over land, is crucial for understanding climate 
variability and change1–4. However, early records of global mean surface temperature 
are uncertain owing to changes in measurement technology and practice, partial 
documentation5–8, and incomplete spatial coverage9. Here we show that existing 
estimates of ocean temperatures in the early twentieth century (1900–1930) are too 
cold, based on independent statistical reconstructions of the global mean surface 
temperature from either ocean or land data. The ocean-based reconstruction is on 
average about 0.26 °C colder than the land-based one, despite very high agreement  
in all other periods. The ocean cold anomaly is unforced, and internal variability in 
climate models cannot explain the observed land–ocean discrepancy. Several lines of 
evidence based on attribution, timescale analysis, coastal grid cells and palaeoclimate 
data support the argument of a substantial cold bias in the observed global sea- 
surface-temperature record in the early twentieth century. Although estimates of 
global warming since the mid-nineteenth century are not affected, correcting the 
ocean cold bias would result in a more modest early-twentieth-century warming 
trend10, a lower estimate of decadal-scale variability inferred from the instrumental 
record3, and better agreement between simulated and observed warming than 
existing datasets suggest2.

Global mean surface temperature (GMST) is a crucial indicator of 
climate change and is essential for guiding climate policies such as 
the Paris Agreement11. It reflects key aspects of Earth’s global tem-
perature variability, such as the response to external forcing and 
large-scale ocean–atmosphere variability1,12. Instrumental GMST 
datasets, which blend sea surface temperature (SST) with surface air 
temperature over land and sea ice (LSAT)13, agree broadly on long-term 
changes and variability4. However, assessing the accuracy and consist-
ency of SSTs and LSATs in the early record is challenging, because of  
(1) observational uncertainties and biases, (2) incomplete coverage, 
and (3) different physical processes affecting the sea surface and land 
air temperatures. First, SSTs and LSATs are derived from different meas-
urement techniques and protocols, introducing distinct biases and 
uncertainties. Early SST records, collected before the Second World 
War (1939–1945), primarily utilized ship-based bucket measurements. 
The transition within the early record from wooden to canvas buckets 
around the late nineteenth century14, combined with the shifting pat-
terns of shipping routes and shipping fleets, complicates systematic 
bias adjustments and adds to their uncertainty. Furthermore, essen-
tial metadata are often incomplete or missing6,15. Engine-room intake 
measurements replaced buckets over time, and much work has focused 

on understanding the biases of buckets relative to this more modern 
measuring technique16,17.

The LSAT record is, similar to the SST record, subject to poten-
tial biases and uncertainties owing to evolving measurement tech-
niques and practices, such as changing sensor exposure5. In addition, 
land-surface changes such as urbanization can strongly affect local 
measurements and complicate spatial homogenization. Discrepan-
cies exist in the early record between different land datasets18, and 
new corrections result in slightly cooler land air temperatures in the 
late nineteenth century and the early twentieth century18. However, at 
large spatial scales, the LSAT record is considered more reliable because 
the bias adjustments are smaller and less systematic than for SSTs5. 
Second, both SST and LSAT datasets are affected by incomplete and 
time-varying spatial coverage, which is particularly sparse in earlier 
records19. Third, SSTs and LSATs are influenced differently by atmos-
pheric and marine processes, air–sea interactions and regional-scale 
climate variability, and might therefore show large differences that are 
nonetheless physically consistent20. Recent studies have assessed the 
agreement of coastal SSTs with nearby land air temperatures, identify-
ing a coastal ocean cold anomaly relative to nearby LSATs in the early 
twentieth century7,20. However, several individual years were in fact 
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anomalously cold owing to volcanic forcing and natural variability in 
this period10,21, and whether these seemingly conflicting conclusions 
can be reconciled remains unclear.

Here our objective is to evaluate the consistency of the early LSAT 
and SST record at the global scale. We develop GMST reconstructions 
using either LSAT or SST records as input to a statistical learning method 
(ridge regression22,23) that is trained on Coupled Model Intercompari-
son Project Phase 6 (CMIP6) climate model simulations. We construct 
a ridge regression model for each monthly LSAT and SST coverage mask 
(from the land-based Climate Research Unit temperature, version 5 
dataset (CRUTEM5) and the Met Office Hadley Centre SST dataset, 
version 4 (HadSST4), respectively14,24) from January 1850 to December 
2020, which predicts monthly GMST from the incomplete LSAT and 
SST fields. We then compile the final reconstructions by using each 
monthly observational value as the predictor for the respective con-
temporary statistical model, and subsequently average annually. In 
other words, the reconstruction first uses climate simulations to learn 
how to reconstruct GMST from sparse and uncertain pseudo- 
observations, then predicts the actual GMST from the real observations. 
From this point forward, these reconstructed time series are referred 

to as ̂
CRUTEM5
GMST

T  and HadSST4
GMST

T̂ , and the set-up is illustrated in Extended 
Data Fig. 1. Our approach leverages uncertainty and bias estimates14,24 
developed for CRUTEM5 and HadSST4 during training and validation 
of the statistical models. This approach balances between regions that 
are highly informative areas for GMST estimation, such as small trop-
ical islands in LSATs (Extended Data Fig. 2), and regions with low meas-
urement uncertainties and biases, to arrive at robust predictions. Our 
method successfully reconstructs GMST from SST and LSAT datasets 
separately, achieving lower reconstruction errors over time as data 
coverage improves and uncertainties decrease. Reconstruction errors 
are about 15−25% lower than those from traditional methods such as 
variants of kriging9 in the early record for both datasets (Methods and 
Supplementary Fig. 1). Furthermore, we also reconstruct GMST from 
the unadjusted HadSST4 fields (‘HadSST4-unadj’; raw gridded data 
before any applied corrections; same coverage as HadSST4), a hybrid 
SST dataset with corrections inferred from coastal weather stations7 
(‘CoastalHybridSST’), and night-time marine air temperatures25 (‘Class-
NMAT’) using the same methodology.

The LSAT-based ( ̂
CRUTEM5
GMST

T ) and SST-based (T̂HadSST4
GMST

) reconstructions 
show high agreement in long-term warming trends, with a recon-
structed GMST increase of 1.06 °C (0.92–1.20 °C) and 1.10 °C (1.03–
1.17 °C; 2.5th to 97.5th percentile range across the predictions for the 
CRUTEM5 and HadSST4 ensemble of bias and uncertainty realizations) 
from 2011 to 2020 compared with 1850 to 1900, for land and ocean 
records, respectively (Fig. 1). These estimates are similar to the Inter-
governmental Panel on Climate Change Sixth Assessment Report 
reported range4 of 1.09 °C (0.95 °C to 1.20 °C). The reconstructions 
agree well on interannual variability, even in periods of sparse coverage 
(Fig. 1c). From 1850 to 1900, the Pearson correlation (r) between annual 
T̂CRUTEM5

GMST
 and ̂

HadSST4
GMST

T  is r = 0.71, surpassing the raw Pearson correlation 
(r = 0.47) of the global mean time series of CRUTEM5 and HadSST4 over 
the same period. This correlation strengthens to r ≈ 0.80 around the 
turn of the twentieth century (1875–1925) and to r ≥ 0.9 for every sub-
sequent 50-year period starting after 1950. This consistency increases 
the confidence in the representation of global temperature variability 
in both land and ocean records despite sparse coverage in the early 
record.

A multidecadal ocean cold anomaly
We identify a multidecadal period in the early twentieth century, 
covering approximately 1900 to 1930, in which T̂HadSST4

GMST
 falls consist-

ently below its land-derived counterpart (T̂CRUTEM5
GMST

; Fig. 1a), on average 
by about 0.26 °C. This period is the only occurrence of systematic 
misalignment of the two reconstructions. ̂

CRUTEM5
GMST

T  indicates steady 

warming from the mid-1880s up to around 1940 (Fig. 1b). Conversely, 

HadSST4
GMST

T̂  shows cooling for about two and a half decades following the 
early 1880s. According to the SST-based reconstruction, the early 
1900s were thus extremely cold, followed by exceptionally fast warm-
ing from about 1910 until 1940. The ocean cold anomaly also arises 
in the SST-based reconstruction when global mean SST or global mean 
LSAT are used as alternative reconstruction targets (Supplementary 
Figs. 3 and 4), and when a machine-learning method is used for global 
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Fig. 1 | GMST reconstruction from land and ocean records. GMST 
reconstruction from the land air temperature record (CRUTEM524) and  

the SST record (HadSST414; reconstruction denoted as T̂HadSST4
GMST

). The raw, 
unadjusted HadSST4 dataset (HadSST4-unadj), marine night-time air 
temperatures (ClassNMAT25) and a hybrid SST product with corrections 
derived from coastal weather stations (CoastalHybridSST7) are similarly 
reconstructed (Methods) and shown for comparison. a, Original GMST 
reconstructions. b, Low-pass filtered reconstructions (>20-year timescale).  
c, High-pass filtered reconstructions (<20-year timescale). d, Forced  
GMST response for each reconstruction. e, Unforced, low-pass filtered 
reconstruction. f, Unforced, high-pass filtered reconstruction. g, Implied 
global mean adjustments relative to unadjusted HadSST4 data, shown as the 

difference between the global reconstructions (T T−HadSST4
GMST

HadSST4–unadj
GMST̂ ̂ , and 

T T̂ ̂−CoastalHybridSST
GMST

HadSST4–unadj
GMST

). The shading represents the 95th percentile 

uncertainty ranges of the THadSST4
GMST̂  and TCRUTEM5

GMST̂  reconstructions, obtained by 
propagating the HadSST4 and CRUTEM5 ensemble of uncertainty realizations. 
The bold lines show the median across the ensemble. Grey vertical shading 
illustrates the 1900–1930 period.
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infilling26 based on the LSAT or SST record only (Extended Data Fig. 4). 
The ocean-based global infilling GMST reconstruction is on average 
0.20 °C colder than the land-based reconstruction, which is very 
similar to our reconstructions when derived without adding uncer-
tainty and bias estimates at training time (Extended Data Fig. 4a and 
Supplementary Fig. 2). The ocean cold anomaly is also evident in 
uncorrected HadSST4 data (T̂HadSST4-unadj

GMST
; Fig. 1), and in other standard 

SST datasets (centennial in situ observation-based estimates of the 
variability of SST and marine meteorological variables, version 2 
(COBE2-SST) and extended reconstructed SST, version 5 (ERSSTv5); 
Extended Data Fig. 5). It appears in marine night-time air temperature 
data ( ClassNMAT

GMST
T̂ ), but ends much earlier, around 1915. Conversely, the 

corrected coastal hybrid SST product (TCoastalHybridSST
GMST̂ ) shows no such 

anomaly (Fig. 1), in agreement with CRUTEM5
GMST

T̂  and the alternative  
Berkeley Earth land air temperature dataset27 (BEST-Land). T̂TBEST-land

GMST
 

shows a slightly lower baseline than T̂CRUTEM5
GMST

 but no multidecadal cold 
anomaly (Extended Data Fig. 5).

The implied global SST adjustment in CoastalHybridSST data, that 
is, the difference to uncorrected data ( −CoastalHybridSST

GMST
HadSST4-unadj
GMST̂ ̂T T ), 

increases markedly before 1900 and remains roughly constant at 
approximately +0.70 °C until 1940, thus reflecting compensation of 
the ocean cold anomaly (Fig. 1g, brown line). Conversely, standard 
HadSST4 adjustments are largely stationary up until 1940 (about 
+0.34 °C during 1900–1940). Some HadSST4 ensemble members fea-
ture a small step change in 1906–1910 to account for the transition 
from well-insulated wooden buckets to poorly insulated canvas buck-
ets14 but metadata are often missing, making it hard to estimate an 
appropriate magnitude for that correction6. The 1910–1940 period in 
the SST record is therefore considered as particularly uncertain5.  
A potentially insufficient correction or incorrect timing of this transi-
tion, as well as the combination of measurements made by different 
fleets during that time, may have introduced biases contributing to 
the identified global ocean cold anomaly.

In the following, we test the possibility that forcing or natural vari-
ability is responsible for the ocean cold anomaly. First, we focus on 
attribution and subtract the forced response from CMIP6 models using 
a standard attribution method28 (Fig. 1d–f). The residual unforced and 

low-pass-filtered time series of T̂HadSST4
GMST

 confirms that the ocean cold 
anomaly persisted into the 1930s (Fig. 1e). The Krakatoa volcanic erup-
tion29 led to cooling in the 1880s (Fig. 1d), but it does not account for 
the anomaly’s multidecadal persistence at the ocean surface, as the 
volcanically forced SST responses in climate models show minimal 
long-term effects (Supplementary Fig. 3). Second, we compare the 
observational reconstruction with climate model simulations from 
the CMIP6 archive, which capture key ocean–atmosphere variability 
patterns30. The models are masked to observational coverage and pro-
cessed identically to observations, to derive comparable ocean- and 
land-based GMST reconstructions. The observed difference between 
ocean- and land-based reconstructions ( ̂ ̂ ̂Δ = −O–L

GMST
HadSST4
GMST

CRUTEM5
GMST

T T T )  
during the ocean cold anomaly falls well outside internal variability in 
ocean–land differences based on all 602 historical CMIP6 simulations 
( ̂Δ O–L,CMIP6

GMST
T ; Fig. 2a), in particular at the multidecadal timescale 

(Fig. 2b). There is no such discrepancy at the interannual timescale 
(Fig. 2c). Moreover, the Pearson correlation between the observed 
land- and ocean-based reconstruction falls below that of any CMIP6 
model simulation at the start of the ocean cold anomaly, indicating 
misalignment in the cooling and warming behaviour of the two recon-
structions (Fig. 2d). Hence, neither a response to forcing nor internal 
variability can explain the ocean cold anomaly, unless all state-of-the-art 
climate models miss a key, unknown process leading to multidecadal 
decoupling of the ocean and land temperature record.

Multidecadal warming or cooling periods are typically spatially 
heterogeneous31, and the early-twentieth-century warming was no 
exception8,10. We analyse the spatial pattern of the ocean cold anomaly 

by comparing spatial patterns of average temperature changes between 
the early twentieth century (1901–1920) and the late nineteenth century 
(1871–1890). We observe substantial cooling in most ocean regions 
in HadSST4, including the Atlantic, North Pacific, South Pacific and 
the Southern Ocean (Fig. 3a). A few sparsely covered regions in the 
Indian Ocean and central Pacific show slight warming. LSAT, however, 
does not show sustained and spatially coherent cooling (Fig. 3a). The 
ocean–land discrepancy is particularly striking when the ocean and land 
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Fig. 2 | Difference in the GMST reconstructed from ocean and land. The 
difference is based on observations (grey and black) and on 602 historical 
climate model simulations from the CMIP6 archive (red), masked to observed, 
time-varying coverage. a, Temperature difference in observationally  

derived GMST reconstructions ( ̂ ̂ ̂Δ = −O−L
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T T T ) and the CMIP6 

reconstructions. b,c, Low-pass filtered T̂Δ O−L
GMST

 (b) and high-pass filtered  

Δ O−L
GMST

T̂  (c), as well as the CMIP6 reconstructions. d, Pearson correlation 
between ocean- and land-based reconstruction in observations and CMIP6 
model simulations in a 51-year moving window. e, High-pass filtered Pearson 
correlation. Black dashed lines represent the original global averages of 
CRUTEM5 and HadSST4 that are scaled with a land–ocean warming ratio of 1.68 
and a global land area and sea ice fraction of 0.33 to represent a comparable 
‘GMST-like’ time series for illustration. Observational reconstruction shading 
represents 95th percentile uncertainty ranges based on an ensemble of 
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record are independently spatially infilled such as in the Berkeley Earth 
dataset, with substantial differences along global coastlines (Fig. 3b).  
A comparison of coastal grid cells with both land and ocean data shows 
statistically significant differences in all regions for that period (Fig. 3c), 
in agreement with previous studies7,20. The above indicates that the 
ocean cold anomaly is manifest in SSTs globally.

The early twentieth century in palaeoclimate data
To further assess the plausibility of the ocean cold anomaly, we turn 
to palaeoclimate reconstructions that extend into the twentieth cen-
tury. The GMST reconstruction from the Past Global Changes 2k work-
ing group (PAGES 2k)12 is based on temperature-sensitive palaeoclimate 
proxies from land and oceans32 and seven different statistical recon-
struction methods. PAGES 2k GMST shows no substantial temperature 

changes overall between the early twentieth century (1901–1920) and 

the late nineteenth century (1871–1890; Fig. 4a). TCRUTEM5
GMST̂  falls within 

the range of these palaeoclimate reconstructions. However, THadSST4
GMST̂  

does not overlap with the uncertainty of the palaeoclimate reconstruc-
tions. We further analyse marine proxy data from the Ocean2k project 
reconstructions for three tropical ocean regions33,34 (Fig. 4b) and indi-
vidual proxy data. We compare the Ocean2k reconstructions with 
HadSST4 and LSAT-based regional SST reconstructions. SST estimates 
suggest strong cooling in all three subregions and the tropics overall 
from the late nineteenth century to the early twentieth century, whereas 
Ocean2k and individual palaeoclimate proxies (Extended Data Fig. 6) 
indicate cooling only in the West Atlantic, with no strong changes  
in the Indian Ocean and Western Pacific. West Atlantic cooling is  
supported by the land-based reconstruction of local West Atlantic 
surface temperatures (T̂CRUTEM5

WAtlantic
). Overall, the Ocean2k palaeoclimate  
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reconstruction aligns more closely with the regional land-based recon-
structions than with regional SST estimates; and although Western 
Atlantic regional cooling into the early twentieth century is evident, a 
substantial global multidecadal SST cooling trend is not seen in the 
palaeoclimate data.

Evidence of residual bias in marine data
The multiple lines of evidence explored above suggest that global 
gridded SST products contain a cold anomaly during approximately 
1900 to 1930 that cannot be explained by known forcings or natural 
variability. We therefore examine whether it is plausible that currently 
used SST bias-adjustment methods fail to correctly account for meas-
urement biases in this period. All standard SST products rely on the 
International Comprehensive Ocean-Atmosphere Data Set (ICOADS)35, 
which compiles diverse data sources with varying regional and tem-
poral contributions. During this period, most measurements were 
taken using various types of bucket14, expected to be biased cold on 
average6. The methods to adjust HadSST4, ERSSTv5 and COBE-SST2 
before the Second World War are based on fixed spatial fields that aim 
to capture the expected spatial and seasonal variations in measure-
ment offsets associated with particular types of bucket, which are 
then combined using smoothly varying global weights15,16. The period 
of the ocean cold anomaly featured rapid changes in the contribu-
tions of observations made by different national fleets (Extended 
Data Fig. 7), along with large differences in mean anomalies among 

those fleets (Extended Data Fig. 8). Such large and rapidly changing 
differences between observations from national fleets contribut-
ing data in different regions of the ocean cannot be accounted for 
using the bias-correction methods based on globally constrained 
and slowly varying adjustment fields, and are hence likely to induce 
residual biases. Investigation showed that reports from the Historical 
Sea Surface Temperature Data (HSSTD) project36, thought to contain 
mainly US data, is colder than any other data source during 1880 to 
1919. Global annual mean anomalies for US data, relative to a modern 
1991–2020 climatology37, are consistently colder than −1 °C; in con-
trast, UK sources show anomalies closer to  −0.5 °C. US observation 
practices during this period38 probably induced large cold biases, as 
observers were instructed to collect samples from three feet below 
the surface and then immerse the thermometer bulb in the sample on 
deck for at least 3 minutes before reading, thus exposing the sample 
to a substantial period of evaporative cooling (Supplementary Infor-
mation). SST anomalies from the fleets of Germany, the Netherlands 
and the United Kingdom show an increasing cold offset over the dec-
ades 1880–1910, whereas the implied US sources are relatively cold 
throughout this period (Extended Data Fig. 8). The offset decreases 
in the subsequent decades, but with slightly different timings. This 
is consistent with the transition to less well-insulated, but more con-
venient, canvas buckets over time5,16, although with the exception of 
German observations that were made with a different type of bucket. 
Given the above considerations, we find it plausible that there is a 
residual cold bias in global SST of a few tenths of a degree that prob-
ably causes part of the difference between the land- and ocean-based 
temperature reconstructions.

Constraints on early-twentieth-century warming
The implausibility of the ocean cold anomaly around 1900–1930 sug-
gested by our analyses necessitates re-evaluation of key aspects of 
global temperature variability in instrumental data since 1850: the 
early-twentieth-century warming from approximately 1900–1940  
(or 1900–1950) has been studied widely10, but the contributing causal 
factors remain relatively poorly understood. Attribution studies of 
the observed early warming suggest that about half of this warming 
is due to external anthropogenic and natural factors10, implying a 
significant role for internal multidecadal variability10,39,40. However, 
studies that resolve land and ocean temperatures separately10,41 show 
that a much larger fraction of early land temperature changes can be 
attributed to external anthropogenic and natural forcing, leaving only 
a smaller role to multidecadal variability. Observed SSTs are cooler 
than models’ SSTs around the turn of the twentieth century and show 
fast warming thereafter10,41, thus implying that the large multidecadal 
internal variability stems primarily from the SST record. In summary, 
if the ocean cold anomaly is considered to be real, one would conclude 
that the models underestimate the decoupling between ocean and 
land warming trends (Fig. 5a), for reasons still unknown. However, 
multidecadal land warming is in fact tightly coupled to ocean warming 
according to physical theory42,43, and for the remainder of the obser-
vational record. Here we exploit this relationship and derive observa-
tional constraints on ocean warming from our land warming 
reconstruction ( CRUTEM5

LSAT
T̂ ); and further constraints from coastal hybrid 

SST data (T̂CoastalHybridSST
GMST

) and the PAGES 2k and Ocean2k palaeoclimate 
reconstructions12,33 using the method of emergent constraints44 (for 
details, see Methods). Given these constraints, late-nineteenth-century 
cooling (1871–1910) as depicted by current SST datasets is probably 
stronger than in reality, and subsequent warming of SSTs during the 
early-twentieth-century-warming period (1901–1940) is probably too 
large: the constraints imply a reduced SST cooling (1871–1910) followed 
by more modest early-twentieth-century-warming in SSTs (1901–1940) 
(Fig. 5). Very similar results are obtained when 50-year trends are used 
to derive the constraints (Supplementary Fig. 8; based on 1871–1920 
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palaeoclimate proxy data. a,b, Difference between post-1900 (1901–1920) 
and pre-1900 (1871–1890) temperature averages in proxy data from the  
PAGES 2k GMST reconstructions12 (a) and for proxy data from the Ocean2k 
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infilled by kriging19; HadCRUT5, the Met Office Hadley Centre and Climatic 
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and 1901–1950 trends). Both discrepancies are tied to the early- 
twentieth-century ocean cold anomaly. This is consistent with recent 
studies that found global temperature variability to be well explained 
by known anthropogenic and natural forcings, but with the cold 
anomaly in the early twentieth century remaining a marked residual2,3. 
If this residual is largely owing to uncorrected SST biases, this implies 
a weaker role of unforced multidecadal variability in the observed 
record and better agreement with climate models.

Conclusion
Our GMST reconstructions from land and SST data yield a consistent 
picture of global interannual temperature variability and long-term 
changes during the instrumental period, but they highlight a pro-
nounced multidecadal ocean cold anomaly around 1900–1930. Some 
years in this period were notably cold owing to volcanic activity and 
internal variability21. But such a prolonged cold period does not appear 
in land data, even with recent homogenization efforts leading to slightly 
cooler land baseline period temperatures18, and with new exposure 
bias-correction methods45. The pronounced ocean cold anomaly con-
tradicts the physical theory of land–ocean warming patterns43, and 
cannot be explained by internal variability or forcing. The anomaly’s 
global scale corroborates earlier findings of discrepancies between 
coastal LSAT and SST records7,20, and palaeoclimate data only suggest 
regional cooling in the Western Atlantic, rather than a global trend.

In the climate system, understanding often emerges through the 
integration of different lines of evidence such as physical theory, sta-
tistical analysis and historical evidence. This approach identified the 
Second World War SST bias46, which was later confirmed by palaeocli-
mate data47. On the basis of the balance of the evidence, we argue that 

the early-twentieth-century ocean cold anomaly largely stems from 
uncorrected SST biases, potentially owing to varying source data from 
national fleets with unaccounted transitions in measurement practice. 
Continued rescue activities of historical climate data and metadata48, as 
well as the development of different SST bias-correction approaches6, 
are therefore crucial to better understand this key period, including 
its regional and seasonal characteristics. Such diverse bias-correction 
approaches, including group-based SST adjustments8, and constraints 
from the SST diurnal cycle49, from coastal20 and palaeoclimate data47, will 
help ensure that any modifications to the global temperature record 
are robust. However, the presented constraints based on coastal land 
temperatures7,20, statistical analysis and palaeoclimate data imply that 
agreement between models and reality in the early twentieth century is 
higher than current observational datasets suggest, and that the role of 
multidecadal temperature variability is smaller than previously thought.
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Fig. 5 | Ocean warming constrained by land warming and palaeoclimate 
reconstructions. a, Land and ocean warming on multidecadal timescales is 
closely linked across CMIP6 models, supported by physical theory43 (the panel 
shows original CMIP6 land and ocean warming trends over 40 years for 
different historical periods). The observed land (CRUTEM5) and ocean 
(HadSST4) records, and their respective reconstructions, deviate from that 
relationship owing to the early-twentieth-century ocean cold anomaly. Ellipses 
show the bivariate 95% range. b, Constraints from land air temperature 
(CRUTEM5), the coastal record (CoastalHybridSST) and palaeoclimate 
reconstructions (PAGES 2k and Ocean2k) show reduced ocean cooling in the 
1871–1910 period owing to a less pronounced early-twentieth-century cold 
anomaly, followed by more moderate 1901–1940 warming compared with 
HadSST4 data. Constraints on ocean temperature trends are derived with the 
method of emergent constraints44, using the relationships across CMIP6 

between the respective temperature trends (GMST from PAGES 2k, T̂CRUTEM5
GMLSAT

  
and so on) and global mean ocean temperature trends (see Methods for 
details). All error bars show 95% prediction intervals. GMLSAT, global mean 
land surface air temperature; GMSST, global mean sea surface temperature.
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Methods

Global mean temperature reconstruction method
To predict global temperature metrics from the LSAT or SST records 
with incomplete coverage, we invoked a regularized linear regression 
method known as ridge regression, a key tool in statistical learning23. 
Training of the statistical models was based on climate model simula-
tions from the CMIP6 archive50 with complete coverage, from which 
we calculated the target metrics of the statistical model. In the main 
text, we focus on GMST as the target metric (that is, Y GMST), but we 
also reconstructed global mean sea surface temperature (GMSST; 
Supplementary Fig. 3) and global mean land surface air temperature 
(GMLSAT; Supplementary Fig. 4). For the land data, we additionally 
reconstructed regional SSTs of the West Pacific (Fig. 4), Indian Ocean 
(Fig. 4) and West Atlantic (Fig. 4). The selected target metrics represent 
key metrics of global temperature change11 and regional ocean tem-
perature change for the comparison with ocean palaeoclimate recon-
structions33. Monthly coverage maps of non-infilled data were taken 
from the CRUTEM5 dataset for the LSAT record24, and from HadSST4  
for the SST record14. For each target metric and for both land and ocean, 
the conceptual reconstruction set-up was conducted using a linear 
statistical model that relates incomplete spatial LSAT or SST patterns 
to the respective target metric (Ymod),

X= + . (1)mod mod
̂Y β ϵ

In equation (1), Ymod represents a vector of length n (the number of 
training time steps in the multi-annual monthly time series) of the 
target metric we seek to reconstruct in climate models used for train-
ing. The respective climate models’ spatial patterns of LSATs or SSTs 
are stored in matrices Xmod of dimension n × (p + 1), and ϵ represents 
the error terms. Each row contains the spatial pattern for a given train-
ing time step (n in total), and each column contains the values of a 
given location (grid cell) as predictor (p spatial predictors in total, and 
an additional column of ones that account for the intercept). As SST 
and LSAT coverage varies over time, the training (equation (1)) is 
repeated for each monthly coverage mask from January 1850 to Decem-
ber 2020 as the statistical model contains a different number of pre-
dictors p for each monthly coverage mask. The training for each 
monthly coverage mask is based on 93 historical climate model simu-
lations (covering the historical time period 1850–2014, or extended 
to 2020 where available, with in total n = 15.626 model-years, trained 
for each month separately) from the CMIP6 archive. During the train-
ing process, a vector of regression coefficients β̂ is estimated, repre-
senting a weight for each local SST or LSAT time series. Hence, the 
estimated regression coefficients seek a representation that optimally 
reconstructs the target metric from the available incomplete spatial 
pattern of the time series across the climate models used for training. 
The statistical model and reconstruction set-up is illustrated in 
Extended Data Fig. 1.

Specifically, for a given coverage mask, here, for example, June 1895, 
and for GMST as the target metric, the training of our statistical recon-
struction model was set up for LSATs and SSTs as:

̂Y β ϵX= + , (2)mod
GMST

mod,Land:1895-06 Land:1895-06

GMST

Y β ϵX= + . (3)mod
GMST

mod,Ocean:1895-06 Ocean:1895-06

GMST̂

It is noted that despite the fact that the coverage is restricted to the 
June 1895 masks in this example, we still used all months of June in the 
full time period of 1850–2014 (partly extended to 2020) from the his-
torical simulations of climate models for training the regression mod-
els (that is, the estimation of regression coefficients). For example, 
Xmod,Land:1895–06 has the dimensions n = 15.626 and (p + 1) = 297, as the 

land-coverage mask in CRUTEM5 has p = 296 non-missing values in 
June 1895.

After estimating the regression coefficients, we predicted each target 
metric at each time step based on SST or LSAT observational datasets, 
and the actual coverage. For example, for June 1895, LSAT and SST pre-
dictions of GMST would read as

T β̂ ̂X= , (4)CRUTEM5:1895-06
GMST

CRUTEM5:1895-06 Land:1895-06

GMST

X= , (5)HadSST4:1895-06
GMST

HadSST4:1895-06 Ocean:1895-06

GMST̂ ̂T β

where XCRUTEM5:1895-06 is now a 1 × (pLand:1895-06 + 1) matrix that contains the 

actual CRUTEM5 data for June 1895, and βCRUTEM5:1895-06

GMST̂  is a vector of 
length (pLand:1895-06 + 1, with p reflecting the number of grid cells that 
contain values in June 1895), which was obtained in the training step 
(equation (2)). By repeating this step analogously for all time steps 
from January 1850 to December 2020, we generated an observational 
reconstruction for each target metric and for the LSAT and SST record, 
for example, denoted for GMST as T̂CRUTEM5

GMST
 and T̂HadSST4

GMST
. The recon-

struction target (GMST) is denoted as the superscript, and the origin 
of the observational dataset as the subscript. In a similar way, we 
achieved a reconstruction of each historical CMIP6 model simulation’s 
GMST by projecting masked temperature patterns on the respective 

regression coefficients (for example, ̂
CMIP6,Land
GMST

T  and ̂
CMIP6,Ocean
GMST

T ). We 
averaged the monthly output to annual means. This yielded a CMIP6 
global temperature reconstruction that covers 1850–2020 based on 
only observed coverage, and thus provides a ‘like by like’ masked com-
parison with observations (in Fig. 2). The reconstruction as described 
above in equations (1)–(5) does not account for observational uncer-
tainties and biases in the training process (‘no uncertainties and biases 
in training’).

Including observational biases and uncertainties in GMST 
estimation
Recent studies have used statistical or machine-learning algorithms, 
trained on climate model simulations, for optimal infilling of incom-
plete observations26. State-of-the-art climate models indeed represent 
key modes of ocean–atmosphere variability and forced response pat-
terns30. Statistical and machine-learning algorithms thus typically 
assume that the training distribution (that is, climate models or rea-
nalyses) and the testing distribution (observations) follow the same 
probability distribution23. This is also assumed in the reconstruction 
method outlined in equations (1)–(5) above. However, the observed 
temperature record contains substantial measurement uncertainties 
and systematic biases, in both observed SSTs6,15 and LSATs13,24 (sum-
marized in the main text), which climate models do not represent. 
If those uncertainties and biases were disregarded, our reconstruc-
tion algorithm would risk being ‘overfitted’—that is, too specifically  
tailored—to climate model simulated patterns and variability. Hence, it 
would probably perform rather poorly on observations, even if the rela-
tionship between local predictors and GMST was reproduced correctly 
in the climate model. This phenomenon is known as covariate shift in 
statistical learning51. For example, grid cells in the tropics often carry 
a high signal for estimating global-scale variability, but precisely those 
grid cells are sparse in the early observational record, and potentially 
affected by measurement uncertainties and biases. In addition to the 
reconstruction method described by equations (1)–(5), we account for 
measurement uncertainties and biases in our reconstruction by making 
use of the existing, comprehensive uncertainty and bias models for 
CRUTEM5 and HadSST4. In HadSST4, uncertainties are modelled in the 
form of three structurally different components13,14: prevalent system-
atic errors with a complex temporal and spatial correlation structure 
(biases, denoted ϵb,Ocean(s, t)); systematic partially correlated errors 
from individual ships or buoys (ϵp,Ocean(s, t)); and uncorrelated errors 
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from individual measurements or incomplete sampling of grid-boxes 
(ϵu,Ocean(s, t)); indices s and t reflect that the error terms vary in space 
and time, respectively. The three error terms are treated as statisti-
cally independent. The time–space systematic errors are represented 
by a 200-member ensemble that represents different realizations of 
these potential biases. Systematic errors from ships or buoys are rep-
resented by spatial error covariance matrices, and uncorrelated errors 
are estimated as gridded error fields.

In CRUTEM5, uncertainties are encoded following the method given 
in ref. 52. A 200-member ensemble of potential realizations of known, 
temporally and spatially correlated uncertainties in near-surface air 
temperature has been produced as part of the HadCRUT5 Noninfilled 
Data Set13 (that is, ϵb,Land(s, t)). The corresponding ensemble of CRUTEM5 
LSAT anomalies has been extracted from this, using the HadSST4 
ensemble to unblend SST and LSAT anomalies in coastal grid cells. 
The ensemble realization of biases encompasses uncertainties such as 
station-based homogenization errors and uncertainty in climatological 
normals, as well as regional urbanization errors and non-standard sen-
sor enclosures (full description provided in refs. 13,24,52). Uncorrelated 
uncertainties (measurement errors or incomplete sampling of grid 
cells) are available in the form of gridded error fields (that is, ϵu,Land(s, t)).

To take into account these comprehensive error structures, we adjust 
the matrices that store the appropriately masked model simulated SST 
or LSAT patterns (Xmod) for training by randomly adding one systematic 
error realization (ϵb(s, t)) of the HadSST4 or CRUTEM5 ensemble to 
each CMIP6 historical model simulation used for training. We further 
generate realizations of the uncorrelated gridded fields (ϵu(s, t)), for 
HadSST4 and CRUTEM5, and in addition a realization of the spatially 
correlated fields (ϵp,Ocean(s, t)) for HadSST4. Hence, for a specific cover-
age mask such as June 1895, we adjust each CMIP6 historical ensemble 
member in the training sample, obtaining:

ϵ ϵX X* = + + , (6)mod,Land:1895-06 mod,Land:1895-06 b,Land:1895-06 u,Land:1895-06

X X= +
+ + .

(7)
mod,Ocean:1895-06 mod,Land:1895-06 b,Ocean:1895-06

p,Ocean:1895-06 u,Ocean:1895-06

∗ ϵ
ϵ ϵ

From these perturbed climate model patterns, we train our statisti-
cal model as indicated in equations (2) and (3), that is, to optimally 
predict the simulated (unperturbed) target metric (Y mod

GMST). This yields 
a new set of regression coefficients based on the perturbed data 
(β̂*

Land:1895-06

GMST
 and β*

Ocean:1895-06

GMST̂ ). By adding the error terms, the algorithm 
optimally predicts the target metric as in equations (1)–(5) while taking 
into account ‘real-world’ estimates of uncertainties and biases in the 
estimation of the regression coefficients. This results in lower coefficient 
weights for grid cells that are strongly affected by uncertainties and 
biases (Extended Data Fig. 2). Finally, following equations (4) and (5),  
we obtain observation-based reconstructions of each target metric 
( *

CRUTEM5
GMST

T̂  and T̂*
HadSST4

GMST
), and analogously based on CMIP6 models 

(T̂*
CMIP6,Land

GMST
 and T̂*

CMIP6,Ocean
GMST

). An ensemble of 200 observational recon-

structed time series ( *
CRUTEM5

GMST
T̂  and ̂*

HadSST4
GMST

T ) is thus obtained, where the 
input for each reconstruction contains a different error realization. 
For ease of notation, we drop the asterisks in the main text, as all 
observations-based reconstructions are trained with bias and uncer-
tainty realizations added to CMIP6, unless noted otherwise. For CMIP6 
reconstructions (T̂*

CMIP6,Land
GMST

 and T*
CMIP6,Ocean

GMST̂ ), individual model mem-
bers (without error realizations) generally serve as input for GMST 
reconstructions, with one exception: for the temporal correlations 
within single reconstructions shown in in Fig. 2d,e, model members are 
treated as observations, meaning a random error and bias realization 
is added to each model member. The reconstruction uncertainty ranges 
in Figs. 1 and 2 are based on the reconstructions ensembles obtained 
as described above (that is, conditional mean predictions based on our 
statistical models from 200 different bias and uncertainty realizations).  

An illustration of the performance of our statistical reconstruction on 
CMIP6 models based on sparse coverage ( June 1895 for land and ocean, 
respectively), and more extensive coverage ( June 1995 for land and 
ocean, respectively) is shown as Extended Data Fig. 3. An evaluation of 
the approach with and without uncertainties and biases is provided 
in Supplementary Information.

Statistical learning technique and cross-validation of statistical 
models
Equation (1) represents a linear regression problem with a relatively 
high dimensionality, where the number of predictors p can be sub-
stantial (for example, p > 1,000). Conventional methods such as ordi-
nary least squares aim to minimize the residual sum of squares 
( Y βXRSS = ∑ ( − )i

n
i ii

2). However, in high-dimensional settings, relying 
on this single objective may be problematic because regression coef-
ficients lack proper constraints53. To address such collinearity issues, 
we turn to ridge regression, a statistical learning technique designed 
for such scenarios23,53. Ridge regression prevents overfitting by incor-
porating a penalty for model complexity through the shrinkage of 
regression coefficients. The shrinkage is based on the sum of squared 
regression coefficients (referred to as L2 regularization) and a ridge 
regression parameter λ that governs the degree of shrinkage. Conse-
quently, ridge regression addresses a joint minimization problem 
expressed as

̂ ∑λ= argmin RSS + . (8)
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This results in small yet non-zero regression coefficients, and these 
coefficients are relatively evenly distributed among correlated predic-
tors23. The tuning parameter λ determines the extent of shrinkage and 
is determined through cross-validation, as discussed in the following 
paragraph. The intercept of the linear model is not shrinked.

Cross-validation
We used a standard cross-validation approach to determine the ridge 
regression parameter (λ) and to obtain the regression coefficients. 
Cross-validation is a common practice in data science, dividing the 
raw dataset into different, distinct folds. This ensures that model 
fitting and validation occur on distinct data subsets, preventing 
biased performance evaluations. In the context of climate science, 
the cross-validation method used here adopts a ‘leave one model out’ 
strategy, resembling an iterative perfect model approach. In this pro-
cess, for a total of k CMIP6 models, the ridge regression model is itera-
tively fitted on k − 1 models and validated on the kth model (referred 
to as ‘leave-one-model-out cross-validation’). This iterative approach 
guarantees that the regression coefficients generalize effectively to 
an unseen model, ensuring the robustness of the statistical model 
across the CMIP6 multi-model archive. The tuning parameter λ is then 
selected during cross-validation to minimize the mean squared error 
on out-of-fold data, and the corresponding regression coefficients 
are extracted. The final set of regression coefficients is obtained as 
the average across the k model fits. As several climate models provide 
different numbers of ensemble members, we weight the regression 
such that each climate model receives equal weight for the extraction 
of regression coefficients.

Data pre-processing and observational data
For the gridded fields as regression predictors, we extracted the vari-
ables ‘tas’ (near-surface air temperature) and ‘tos’ (sea surface tem-
perature) from climate model historical (1850–2014) and 2014–2020 
simulations following the Shared Socioeconomic Pathway (SSP) 2-4.5 
scenario that contributed to the CMIP6 multi-model archive50. All simu-
lations were regridded to a regular 5 × 5° longitude–latitude grid, which 
is identical to the CRUTEM5 and HadSST4 grid. All climate model data 



were centred based on a 1961–1990 reference period, in accordance 
with CRUTEM5 and HadSST4 data processing.

We computed the target metrics of our regression models as follows 
from the models’ native grids. Global mean surface air temperature 
(GSAT) is the area-weighted global mean of near-surface air tempera-
ture from the spatially complete gridded fields. Global mean surface 
temperature (GMST) is the blended area-weighted average of SSTs over 
ocean areas, and surface air temperatures over land areas and areas 
with sea ice. We follow a standard blending procedure54, where blend-
ing is conducted based on the absolute temperature values (including 
sea-ice masks from CMIP6 models). GMSST and GMLSAT are deter-
mined analogously as the global area-weighted average of SSTs and 
LSATs, respectively. We also computed regional target metrics for the 
comparison of instrumental observations with palaeoclimate recon-
structions, following ref. 33. The tropical SST reconstruction target met-
rics cover the (area-averaged) Indian Ocean (20° N–15° S, 40–100° E, 
in total 25.5 × 106 km2), western Pacific (25° N–25° S, 110–155° E,  
26.9 × 106 km2) and western Atlantic (15–30° N, 60–90° W, 5.1 × 106 km2) 
oceans. All target metrics are centred based on the 1961–1990 refer-
ence period.

For the training of our regression models, we selected three his-
torical ensemble members from each CMIP6 model, and the time 
period 1850–2020 (historical simulations and SSP2-4.5 simulations 
are concatenated up to 2020). The training dataset consisted in total 
of 15,626 model-years, and an overview of the CMIP6 models used for 
training is given in Supplementary Table 4. As the optimal reconstruc-
tion coefficients may vary seasonally, training of the regression models 
for each month m was based on monthly data only from the same month 
in CMIP6 models (that is, the 15,626 model-years correspond to 15,626 
monthly training samples).

Once regression coefficients were extracted following the meth-
odology described above, we obtained observation-based predic-
tions for all target metrics by using the spatially incomplete CRUTEM5 
and HadSST4 data as inputs to the regression models (equations (4)  
and (5)). The comparison of our observation-based reconstruction with 
CMIP6 models in Fig. 2 was based on 602 CMIP6 historical simulations 
that contain ‘tas’ and ‘tos’ data, that is, 98.835 model-years (overview in 
Supplementary Table 4), which were masked and reconstructed with 
observational coverage for each time step.

Additional observation-based reconstructions
The focus of this paper is to understand and compare the global tem-
perature reconstructions obtained independently from the HadSST4 
dataset14 and the CRUTEM5 LSAT dataset24, which are both subject to 
varying incomplete coverage and affected by complex time-evolving 
uncertainties and biases. Both datasets and their uncertainties have 
been developed and maintained over decades14,24, and both are key 
datasets that inform the Intergovernmental Panel on Climate Change 
process4. However, several other SST, LSAT and night-time marine air 
temperature datasets have been developed, and our goal is to compare 
those data on a ‘like by like’ basis with our reconstructions: we derived 
a land-based reconstruction using an alternative LSAT dataset (Berke-
ley Earth Land27) instead of CRUTEM5 as the predictor. These recon-
structions (TBEST–land

̂ ) used the model trained with CRUTEM5 coverage, 
and a few missing grid cells were filled using nearest-neighbour inter-
polation. Berkeley Earth Land is based on the Global Historical Clima-
tology Network Monthly Temperature Dataset55, Version 4, with a much 
higher number of weather stations than CRUTEM5, and compares 
favourably to a recently homogenized land dataset18. Similarly, we used 
three alternative SST datasets (COBE-SST256, ERSST557 and an unad-
justed version of HadSST4), and we projected all three datasets onto 
the regression coefficients obtained for the CMIP6 SSTs masked to 
HadSST4 coverage. COBE-SST2 and ERSST5 in general have larger cov-
erage than HadSST4, but again a few missing grid cells were filled using 
nearest-neighbour interpolation.

In addition, we trained three global-scale reconstructions based on 
other datasets for comparison. We followed the reconstruction method 
outlined above but with different training and observational datasets. 
First, a reconstruction was trained on CMIP6 marine air temperatures 
(‘tas’ over the ocean), and the regression model was subsequently used 
to derive a reconstruction for observed night-time marine air tem-
perature data (ClassNMAT25; that is, reconstructions denoted ClassNMATT̂  
in the main text). Second, we derived a reconstruction based on the 
CoastalHybridSST dataset7 ( CoastalHybridSSTT̂ ), that is, a SST dataset with 
corrections derived from co-located coastal weather stations. The 
training steps were identical to the training of HadSST4, but using the 
coverage masks from HadSST3 (on which the ‘CoastalHybridSST’ data-
set is based) and its uncertainties. Third, we trained our regression 
models on CMIP6 data masked to HadSST4 coverage as above, but with 
the global mean removed individually for each time step. We subse-
quently used this regression model with HadSST4 with the global mean 
removed at each time step as predictors (shown in Supplementary 
Fig. 5). This approach is similar to ref. 58, and allows to test whether 
large-scale atmosphere–ocean climate variability (which is still largely 
present if the global mean at each time step is removed) may explain 
part of the cold anomaly. A full overview of all reconstructions analysed 
in this paper is provided in Supplementary Table 1, and an overview of 
the gridded datasets in Supplementary Table 2.

In addition, we compared our observational GMST reconstructions 
to several widely used blended GMST datasets (Extended Data Fig. 4). 
In addition, we used the machine-learning method for climate recon-
structions by ref. 26 as an independent technique to evaluate and 
compare the main method of this study (without including estimates 
of uncertainty and biases at training time) (Extended Data Fig. 4a). 
Similarly to above, CMIP6 historical experiments were trained with 
the missing value masks of HadSST4 and CRUTEM5. Subsequently, 
each observational dataset was infilled by the convolutional neural 
network using partial convolutions and an updated mask mechanism. 
An overview over all observational datasets used is provided in Sup-
plementary Table 3.

Palaeoclimate data
We compared our reconstructions with two palaeoclimate reconstruc-
tions (Supplementary Table 3).

First, we analysed a reconstruction of annual GMST that uses the 
PAGES 2k temperature multi-proxy data collection32 (version 2.0.0) 
as presented in ref. 12. The proxy records undergo screening based on 
regional temperature, resulting in a subset of 257 records, of which 81% 
are from trees or corals. The calibration period spans ad 1850–2000, 
and calibration is based on the Cowtan–Way kriging interpolated Had-
CRUT4 dataset19. Various reconstruction methods are used to recon-
struct 2,000 years (ad 1–2000) of annual GMST: composite plus scaling 
(CPS), principal component regression (PCR), M0859 (based on a regu-
larized expectation maximization algorithm), pairwise comparison 
(PAI), the OIE method (derived from CPS but with more comprehensive 
uncertainty estimation), BHM (a statistical model of GMST depending 
on external forcing and additive noise), and DA (fusing proxy records 
and climate model simulations). Four methods (CPS, PCR, BHM and 
DA) are based on only annually resolved proxies, whereas the other 
three methods also include low-frequency proxies. Each method gen-
erates an ensemble of 1,000 GMST reconstructions for uncertainty 
quantification; thus, in total, 7,000 ensemble members that cover 
different proxy types and different statistical reconstruction methods. 
Method-specific details and adaptations, as well as an evaluation and 
discussion of uncertainties, are outlined in ref. 12.

Second, we analysed a regional SST reconstruction33, which is based 
on only ocean proxy records. The ocean proxy records are derived 
exclusively from annually or seasonally resolved tropical coral archives. 
Temperature estimation is based mainly on oxygen isotopic composi-
tion (δ18O of coral carbonate), but records based on the skeletal Sr/Ca 
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ratio and coral growth rate are also included. Reconstruction targets are 
regionally averaged tropical SST anomalies at the annual timescale for 
four large-scale ocean basins: the western Atlantic, the eastern Pacific, 
the western Pacific and the Indian Ocean. The study uses a weighted CPS 
approach, using a nesting procedure to address the changing number 
of available observations over time. Palaeoclimate proxies are not 
screened, but weighted. Each record’s contribution to the composite is 
scaled by its relationship with instrumental target SST anomalies, con-
sidering both magnitude and significance of variance. An ensemble of 
reconstructions accounts for uncertainties in the CPS method, different 
weighting schemes and calibration periods. The ‘best’ reconstruction 
is selected based on the highest cumulative reduction of error score 
over the validation period. Finally, we analysed individual palaeocli-
mate proxies in Extended Data Fig. 6 and Supplementary Information.

Analysis methods and evaluation metrics
Timescale separation and attribution. To analyse our GMST recon-
structions, we apply a timescale filtering and an attribution method in 
Fig. 1. We use a low-pass Butterworth filter with a period of 20 years to 
separate our original reconstruction in a low-pass filtered and high-pass 
filtered time series (Fig. 1b,c) based on the R package ‘dplr’60.

To further analyse forced and unforced components of the recon-
structions, we apply an attribution method28 for global mean tem-
perature. The reconstructed T

GMST̂  (or other target metric) is regressed 
on the multi-model mean of CMIP6 in the 1850–2014 time period (that 
is, the ‘forced response’ of the CMIP6 multi-model mean in historical 
simulations). Internal variability is assumed to follow a simple stochas-
tic AR(1) process, which conceptually represents atmospheric white 
noise dynamics that force a damped and slower system of the oceans28. 
The regression model is solved following the Hildreth–Lu method61. 
The scaled forced responses for the different reconstructions are shown 
in Fig. 1d, and unforced residual components in Fig. 1e,f. All data pro-
cessing and statistical computations as well as figures were created 
using the R software for statistical computing, version 4.2.2 (ref. 62). 
For creating the maps in Fig. 3 and Extended Data Figs. 1, 2 and 6, we 
used the ‘sp’63,64 and ‘raster’65 packages. The land contours and country 
polygons of the figures that show maps were obtained from Natural 
Earth (naturalearthdata.com).

Evaluation metrics and constraints on ocean warming
Several evaluation metrics are derived from our land- and ocean-based 
reconstructions, and we compare those with climate models and pal-
aeoclimate reconstructions:
•	 Temperature difference of ocean- versus land-based GMST recon-

struction. We analysed the difference between the ocean- and 
land-based reconstructions at each time step for a given target  
metric, T T T̂ ̂ ̂Δ = −O-L

GMST
HadSST4
GMST

CRUTEM5
GMST

. The observationally derived 
Δ O-L

GMST
T̂ , including the error realizations, was compared with the 

equivalently masked reconstruction range of ocean and land tem-
peratures in the CMIP6 models ( ̂Δ O-L,CMIP6

GMST
T ), and shown in Fig. 2 along 

with a low-pass and a high-pass filtered version.
•	 Pearson correlation between ocean- and land-based reconstructions. 

We calculated the Pearson correlation between the original land and 
ocean reconstructions ( ̂ ̂T Tr( , )HadSST4

GMST
CRUTEM5
GMST

) and for the high-pass 
filtered versions in a 50-year moving window. We compared the time 

series of T Tr( , )HadSST4
GMST

CRUTEM5
GMST̂ ̂  with the range of Pearson correlations 

obtained from reconstructions of CMIP6 model simulations 
( T T̂ ̂r( , )Ocean,CMIP6

GMST
Land,CMIP6
GMST

) masked and processed in the same way 
as observations, including observational error realizations, in Fig. 2.

•	 Turn-of-the-twentieth-century temperature change (1901–1920 
averages compared with 1871–1890 averages). Because ocean- 
derived temperatures deviate from the land-derived temperatures 
from the 1890s onwards, we compared the multidecadal period 
before the ocean cold anomaly (1871–1890) with a period during 
the cold anomaly (1901–1920). We computed multidecadal 

temperature changes around the turn of the twentieth century as 
the difference between temperature averages in both periods, 

̂ ̂ ̂Δ = −
GMST

1901−1920 1871−1890T T T . These temperature differences are  
computed for co-located coastal SST and LSAT data (Fig. 3), and for 
the global reconstructions and palaeoclimate reconstructions 
(Fig. 4). A t-test for significant differences between co-located 
coastal land and coastal marine grid cells was conducted for all 
large-scale regions shown in Fig. 3c.

•	 Emergent constraints on SST trends. We derived emergent constraints 
on global mean SST trends in the period 1871–1910 (ocean cooling) 
and for the early-twentieth-century-warming period (1901–1940). 

Constraints were derived based on HadSST4 (THadSST4
GMSST̂ ) and the Coastal

HybridSST dataset7 (T̂CoastalHybridSST
GMSST

), as well as from land temperature 

change based on CRUTEM5 ( CRUTEM5
GMLSAT

T̂ ), and based on the PAGES 2k 
GMST reconstructions and the Ocean2k tropical SST reconstruction. 
We related all datasets to global mean SST trends using an emergent 
constraint technique44 explained in the next paragraph.

Derivation of observational constraints on historical ocean 
warming
In Fig. 5, we constrained the ranges of global mean SST trends in the 
1871–1910 and 1901–1940 periods using the different observation-based 
datasets (longer periods, 1871–1920 and 1901–1950, are shown addi-
tionally in Supplementary Fig. 8). To derive those uncertainty ranges, 
we applied the method of emergent constraints44, which uses the rela-
tionship between an observable metric (predictor metric) and a target 
metric across an ensemble of climate model simulations to constrain 
the target metric based on the observable climate metric. In our appli-
cation, the predictor metrics and the target metric consisted of tem-
perature trends from the same time period but for different large-scale 
regions. Our target metric in Fig. 5 was the GMSST trend in the periods 
1871–1910 and 1901–1940, respectively. The predictor metrics were 
the predicted GMSST trends (

GMSST
T̂ ) for the HadSST4 and Coastal

HybridSST datasets, predicted GMLSAT trends ( ̂ GMLSAT
T ) for CRUTEM5, 

GMST (
GMST

T̂ ) for the PAGES 2k reconstructions, and tropical mean 
SSTs as the weighted average across the tropical Ocean2k regions33. 
We first verified that CMIP6 historical simulations (including indi-
vidual ensemble members to capture internal variability) show a strong 
linear relationship between our target metric and the respective  
predictor metrics. We found that relationships are linear with Pear-
son correlations of temperature trends of ̂T Tr( , ) = 0.98GMSST GMSST

,  
T T̂r( , ) = 0.84GMSST GMLSAT

, r(TGMSST, TTMSST) = 0.82, and r(TGMSST, TGMST) = 
0.96 in the 1901–1940 period across the CMIP6 historical simulations. 
The linearity between land and ocean warming is expected from phys-
ical theory43. Second, we used least-squares linear regression to derive 
prediction intervals for our target metric based on each individual 
predictor metric, following ref. 44. Linear regression between two 
univariate variables y and x is given by y = β1x + β0 + ϵ, where β1 is the 
regression slope and β0 is the intercept. Least-squares linear regression 
minimizes the least-squares error
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covariance between x and y, and the variance of x, respectively. The 
‘prediction error’ of linear regression is given by44:
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Hence, for an observations-based temperature trend (xobs), we pre-
dict the mean conditional GMSST trend as y β x β= +obs 1 obs 0

̂ , and we 

http://naturalearthdata.com


obtain the 2.5th to 97.5th percentile prediction ranges as ̂y σ± 1.96 fobs . 
In cases where observational uncertainty estimates are available as an 
ensemble (xobs,i, we derived the mean conditional GMSST trend as above 
for each member i of the observational ensemble (with nens denoting 
the ensemble size), and subsequently we sample for each member 
k = 100 times from a Gaussian distribution (N ̂μ y σ σ( = , = )i fobs,

2 2 ) to  
capture the prediction uncertainty around each ensemble member 

̂y iobs,
. Finally, we obtain the constrained range of GMSST trends as the 

empirical 2.5th and 97.5th percentiles across the nens × k samples. The 
obtained prediction ranges thus account for internal variability in the 
relationship between our respective predictor metrics and our target 
metric.

Implications of early-twentieth-century global ocean cold 
anomaly for unforced variability estimates
In the main text, we discuss the implications of the ocean cold anomaly 
for the early-twentieth-century land and ocean warming, including 
the apparent ocean cooling before and up to around 1910 that is not 
supported by the land data. An additional aspect that requires atten-
tion in future work is the representation of decadal-to-multidecadal 
variability in models and observations. Some long-standing concerns 
have been raised that climate models may underestimate the mag-
nitude of multidecadal variability at global or subglobal scales66–68, 
whereas others argue that global-scale temperature variability on 
interannual to centennial timescales is plausibly represented12,69–73. 
Yet, the range of unforced interdecadal variability in CMIP6 models is 
large74. Recent studies have found that global temperature variability 
is well explained by known anthropogenic and natural forcings, but 
the cold anomaly in the early twentieth century remains a marked cold 
residual2,3. If the ocean cold anomaly arises partly owing to uncor-
rected SST biases, it would imply improved agreement between mod-
els and observations in the instrumental period, and thus a smaller 
role for internal unforced variability than previously thought owing 
to a reduced cold residual in the early twentieth century2,3.

Data availability
All data used in this study are from publicly available sources. Climate 
model simulations from the CMIP6 archive are available at https://
esgf-node.llnl.gov/projects/cmip6/; the individual models used for 
training and analysis are detailed in Supplementary Table 4. Grid-
ded observational temperature datasets are available from different 
sources (detailed overview available in Supplementary Table 2) and 
summarized here: CRUTEM524, HadSST414 (including HadSST4-unadj) 
and HadCRUT513 are available from the UK Met Office under British 
Crown Copyright (https://www.metoffice.gov.uk/hadobs/crutem5/
data/CRUTEM.5.0.1.0/download.html; https://www.metoffice.gov.
uk/hadobs/hadsst4/data/download.html; https://www.metoffice.
gov.uk/hadobs/hadcrut5/), provided under an Open Government 
License, including its bias realizations, uncertainty estimates, land 
fraction files; and its respective original global mean temperature 
estimates. Gridded night-time marine air temperature data from 
ClassNMAT25 are available through https://catalogue.ceda.ac.uk/uuid/ 
5bbf48b128bd488dbb10a56111feb36a, and CoastalHybridSST data7 can 
be obtained from https://www-users.york.ac.uk/~kdc3/papers/evaluat-
ing2017/. Additional gridded SST datasets (COBE-SST2 from ref. 56 and 
ERSSTv5 from ref. 57, both provided by the NOAA PSL, Boulder, Colo-
rado, USA, from their website at https://psl.noaa.gov/data/gridded/
data.cobe2.html and https://psl.noaa.gov/data/gridded/data.noaa.
ersst.v5.html) and land air temperature datasets (Berkeley Earth Land 
from ref. 27, https://berkeleyearth.org/data/) are available. Standard 
GMST time series shown in Extended Data Fig. 4 are available from the 
following sources: the Cowtan–Way14 datasets19 (https://www-users.
york.ac.uk/~kdc3/papers/coverage2013/series.html); JMA GMST56 
(https://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html); 

NOAAGlobalTemp Version 575 (https://www.ncei.noaa.gov/products/
land-based-station/noaa-global-temp); NASA-GISTEMP76 (https://data.
giss.nasa.gov/gistemp/). The in situ SST analysis used data from the 
ICOADS database Release 335 (https://icoads.noaa.gov/), and from the 
World Meteorological Organization (WMO) Historical Sea Surface Tem-
perature Data project36 (HSSTD). The climatological baseline to pro-
cess in situ records is taken from the European Space Agency Climate 
Change Initiative (ESA-CCI) SST climate data record (Level 4 SST CCI 
analysis product37), available from https://climate.esa.int/en/projects/
sea-surface-temperature/. The analysis of palaeoclimate data made 
use of the PAGES 2k multi-proxy GMST reconstructions12,32 (https://
www.ncei.noaa.gov/access/paleo-search/study/26872), and of the 
Ocean2k regional sea surface temperature reconstructions in the trop-
ics33 (https://www.ncei.noaa.gov/access/paleo-search/study/17955), 
including the tropical average reconstruction34. Intermediate and 
post-processed data to reproduce our analysis are available under 
https://data.iac.ethz.ch/Sippel_et_al_2024_ocean-cold-anomaly/. Final 
figures and the reconstructions developed in this study are made pub-
licly and permanently available on Zenodo at https://doi.org/10.5281/
zenodo.13646027 (ref. 77). Source data are provided with this paper.

Code availability
All code to reproduce this analysis is publicly available on Zenodo at 
https://doi.org/10.5281/zenodo.13646027 (ref. 77).
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Extended Data Fig. 1 | Illustration of global mean surface temperature 
reconstruction. A regularized linear statistical model relates spatially 
incomplete patterns of land- or ocean-based temperature measurements in 
CMIP6 models (Xn×p, not including the intercept in the illustration) to the 
corresponding GMST (YGMST). Uncertainty and bias estimates of the 

observational data are included in the training process by adding realizations 
of biases and uncertainties (bottom row) to the masked CMIP6 predictors. 
CMIP6 simulated patterns and uncertainty and bias estimates are illustrated 
here for the land coverage in June 1895.
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Extended Data Fig. 2 | Illustration of regression coefficients for land- and 
ocean-based reconstruction. Ridge regression coefficients for the GMST 
reconstruction based on (a, b) land, and (c, d) ocean data. Regression 

coefficients are shown for (a, c) training on CMIP6 data without adding error 
realizations, and (b, d) when error realizations are added.



Extended Data Fig. 3 | Illustration of reconstruction skill for June 1895 and 
June 1995 coverage; including estimates of uncertainty and biases in the 
training step. Each gray dot represents a year of the CMIP6 realizations used 
for training the reconstructions (1850-2020; coverage fixed to (a, b) June 1895 

and (c, d) June 1995, respectively), with a specific randomized representation 
of the observational errors, and one fixed bias realization added to each CMIP6 
historical simulation.
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Extended Data Fig. 4 | Comparison of GMST reconstructions to standard 
GMST datasets. a GMST reconstructions when uncertainties are not included 
in the training dataset, compared to standard GMST products, and b GMST 
reconstructions with uncertainties included in the training dataset. Panel a 
also shows a reconstruction of GMST based on infilling the whole field from 
land (yellow line) and ocean-data only (light blue line) based on the machine 
learning method used in ref. 26.



Extended Data Fig. 5 | Global mean surface temperature reconstruction 
from the land and ocean record with several additional reconstructions, 
showing the pre-1960 record. GMST reconstruction from the SST record 

(T̂HadSST4
GMST

) and from the land air temperature record (TCRUTEM5
GMST̂ ), shown along 

several additional GMST reconstructions from alternative land air temperature 

data (TBEST−Land
GMST̂ ) and from other SST products ( COBE−SST2

GMST
T̂  and ̂

ERSSTv5
GMST

T ).  
b. low-pass filtered reconstructions (>20-year time scale), c. high-pass filtered 
reconstructions (<20-year time scale), d. forced GMST response for each 
reconstruction, e. unforced, low-pass filtered reconstruction, f. unforced, 
high-pass filtered reconstruction. The additional GMST reconstructions are 
based on CRUTEM5 and HadSST4 coverage masks, respectively, where few 
missing grid cells have been filled using the nearest-neighbour technique. 

Shading represents the 95th percentile uncertainty ranges of the T̂HadSST4
GMST

 and 

TCRUTEM5
GMST̂  reconstructions, obtained by propagating the HadSST4 and CRUTEM5 

ensemble of uncertainty realizations; bold lines show the median across the 
ensemble.
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Extended Data Fig. 6 | Relative changes in terrestrial and marine 
temperature proxies in the period 1901-20 compared to 1871-1890.  
a Terrestrial proxies with positive anomalies, b marine proxies with positive 
anomalies, c terrestrial proxies with negative anomalies, d marine proxies  

with negative anomalies. All proxy records are uncalibrated, and are shown  
as standardized z-scores relative to the 1871-90 reference period. Hence, 
colours reflect relative warming/cooling; the darker the color, the greater the 
warming/cooling.



Extended Data Fig. 7 | Breakdown of contributions by month to ICOADS subsets split by country of origin, where HSSTD refers to the Historical Sea 
Surface Temperature Data project36. a. number of reports per month; b. as percentage of total.
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Extended Data Fig. 8 | Summary of anomalies by decade for ICOADS subsets 
split by country of origin. Boxes show interquartile range of global monthly 
mean anomalies in decades from 1880s to 1930s, whiskers indicate the full 
range. The wide grey boxes are for all observations and the colored boxes for 
contributing subsets as shown in the legend. The colored bars at the bottom 
show the fractional contribution of each subset to each decade with light grey 
representing “other” observations not included in the country subsets. 
Subsets are HSSTD (ICOADS DCKs 150-156, predominantly data from US); 
Germany (DCKs 192,215,720); Netherlands (DCK 193); UK (DCKs 194,201-
204,216,245); Japan (DCKs 118, 762); see ref. 78. Prior to 1900 most of the 
reports classified as “other” come from DCK 704, later reports are largely from 
DCKs 705-707. Further analysis on ICOADS contributing sources is available in 
the Supplementary Information and relies on references38,79–82.
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